Effect of Forest Ecosystems on the Snow Water Equivalent in Relation to Aspect And Elevation in the Hučava River Watershed, Poľana Biosphere Reserve (Slovakia)

Michal Mikloš 1 , Ilja Vyskot 2 , Tomáš Šatala 1 , Katarína Korísteková 1 , 3 , Martin Jančo 1 , 4 , and Jaroslav Škvarenina 1
  • 1 Department of Natural Environment, Faculty of Forestry, Technical University in Zvolen, 960 53, Zvolen
  • 2 Department of Environmentalistics and Natural Resources (FRDIS), Faculty of Regional Development and International Studies, Mendel University in Brno, 613 00, Brno
  • 3 Department of Fire Protection, Faculty of Wood Sciences and Technology, Technical University in Zvolen, 960 53, Zvolen
  • 4 Department of Biology and General Ecology, Faculty of Ecology and Environmental Sciences, Technical University in Zvolen, 960 53, Zvolen


The aim of this work was to assess how forest ecosystems dominated by Norway spruce (Picea abies (L.) or European beech (Fagus sylvatica L.) affect snow water equivalent (SWE) in relation to aspect and elevation. The research plots were established in a small headwater watershed of the Hučava flow belonging to the Poľana Biosphere Reserve (Central Europe, Inner Western Carpathians). The SWE values in this watershed (approximately 580–1270 m a.s.l.) were monitored during the three winter seasons starting from 2012–2013 to 2014–2015. The results revealed high variability in SWE and in snow cover duration between the studied seasons. The spatial variability was significantly affected by the forest ecosystem, aspect and elevation. The seasonal mean SWE value was lower by about 50–60% in the spruce forests and by about 21–30% in the beech forests compared to the open areas (100%). Over the whole seasons, the whole watershed mean SWE value on the slopes with the northern aspect was mostly higher compared to the slopes with the southern aspect. The effect of aspect was significant mainly in the open areas and in the forests dominated by European beech during the ablation periods of every season. In the case of the sufficient snow cover, the mean SWE value always increased with elevation. The elevation gradient of SWE was steepest at the open areas of the watershed in the peaks of the winter seasons. The three-season mean value of SWE elevation gradient (per 100 m) at the time of snow accumulation peak was equal to 16 mm in the spruce forests, 20 mm in the beech forests and 26 mm in the open areas. The research revealed that SWE is significantly affected by the forest ecosystem whilst its effect is dependent on the occurrence of dominant deciduous or coniferous tree species. However, the effect of forests is closely related to topographic characteristics (aspect and elevation) of a locality.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anderton, S.P., White, S.M. & Alvera B. (2002). Micro-scale spatial variability and the timing of snow melt runoff in a high mountain catchment. J. Hydrol., 268, 158–176. DOI: 10.1016/S0022-1694(02)00179-8.

  • Anderton, S.P., White, S.M. & Alvera B. (2004). Evaluation of spatial variability in snow water equivalent for a high mountain catchment. Hydrological Processes, 18, 435–453. DOI: 10.1002/Hyp.1319.

  • Bartík, M., Sitko, R., Oreňák, M., Slovik, J. & Škvarenina J. (2014). Snow accumulation and ablation in disturbed mountain spruce forest in West Tatra Mts. Biologia, 69, 1492–1501. DOI: 10.2478/s11756-014-0461-x.

  • Balk, B. & Elder K. (2000). Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed. Water Resources Research, 36, 13–26. DOI: 10.1029/1999wr900251.

  • Bavay, M., Grünewald, T. & Lehning M. (2013). Response of snow cover and runoff to climate change in high Alpine catchments of Eastern Switzerland. Advances in Water Resources, 55, 4–16. DOI: 10.1016/j.advwatres.2012.12.009.

  • Beniston, M. (1997). Variations of snow depth and duration in the Swiss Alps over the last 50 years: links to changes in large-scale climatic forcings. Climatic Change at High Elevation Sites, 36, 281–300. DOI: 10.1023/A:1005310214361.

  • Brown, R.D. (2000). Northern hemisphere snow cover variability and change, 1915–1997. Journal of Climate, 13, 2339–2355. DOI: 10.1175/15200442(2000)013<2339:NHSCVA>2.0.CO;2.

  • Bulygina, O.N., Razuvaev, V.N. & Korshunova N. N. (2009). Changes in snow cover over Northern Eurasia in the last few decades. Environmental Research Letters, 4, 1–6. DOI: 10.1088/1748-9326/4/4/045026.

  • Danko, M., Krajčí, P. & Hlavčo J. (2014). The relationship between snow depth and snow water equivalent in the forest and in the open area in the Jalovecký creek catchment (in Slovak). Acta Hydrologica Slovaca, 15, 116–128.

  • D’Eon, R.G. (2004). Snow depth as a function of canopy cover in a forested ungulate winter range in southeast British Columbia. BC Journal of Ecosystems and Management, 3, 1–9.

  • Dublan, L. & Jánošová J. (1991). Geologická stavba kaldery Poľany. Stredné Slovensko, Prírodné vedy, 10, 95–110.

  • Durand, M. (2011). Snow water equivalent. In V.P. Singh, P. Singh & U.K. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers (pp. 170–171). London: Springer.

  • Elder, K., Dozier, J. & Michaelsen J. (1991). Snow accumulation and distribution in an alpine watershed. Water Resources Research, 27, 1541–1552. DOI: 10.1029/91WR00506.

  • Elder, K., Rosenthal, W. & Davis R.E. (1998). Estimating the spatial distribution of snow water equivalence in a montane watershed. Hydrological Processes, 12(10–11), 1793–1808. DOI: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1793::AID-HYP695>3.0.CO;2-K.

  • Essery, R., Bunting, P., Hardy, J., Link, T., Marks, D., Melloh, R., Pomeroy, J., Rowlands, A. & Rutter N. (2008). Radiative Transfer Modeling of a Coniferous Canopy Characterized by Airborne Remote Sensing. Journal of Hydrometeorology, 9, 228–241. DOI: 10.1175/2007JHM870.1.

  • Golding, D.L. & Swanson R.H. (1986). Snow distribution patterns in clearings and adjacent forest. Water Resources Research, 22, 1931–1940. DOI: 10.1029/WR022i013p01931.

  • Gömöryová, E., Gregor, J., Pichler, V. & Gömöry D. (2006). Spatial patterns of soil microbial characteristics and soil moisture in a natural beech forest. Biologia, 61, 329–333. DOI: 10.2478/s11756-006-0183-9.

  • Grünewald, T. & Lehning M. (2011). Altitudinal dependency of snow amounts in two small alpine catchments: can catchment-wide snow amounts be estimated via single snow or precipitation stations?. Annals of Glaciology, 52, 153–158. DOI: 10.3189/172756411797252248.

  • Grünewald, T., Stötter, J., Pomeroy, J.W., Dadic, R., Moreno Baños, I., Marturià, J., Spross, M., Hopkinson, C., Burlando, P. & Lehning M. (2013). Statistical modelling of the snow depth distribution in open alpine terrain. Hydrological Earth System Sciences, 17, 3005–3021. DOI: 10.5194/hess-17-3005-2013.

  • Hedstrom, N.R. & Pomeroy J.W. (1998). Measurements and modelling of snow interception in the boreal forest. Hydrological Processes, 12, 1611–1625. DOI: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1611::AIDHYP684>3.0.CO;2-4.

  • Holko, L. (2000). Evaluation of long-term snow cover data in a mountain catchment. Acta Hydrologica Slovaca, 1, 15.

  • Holko, L., Škvarenina, J., Kostka, Z., Frič, M. & Staroň J. (2009). Impact of spruce forest on rainfall interception and seasonal snow cover evolution in the Western Tatra Mountains, Slovakia. Biologia, 64(3), 594–599. DOI: 10.2478/s11756-009-0087-6.

  • Hríbik, M., Majlingová, A., Škvarenina, J. & Kyselová D. (2009). Winter snow supply in small mountain watershed as a potential hazard of spring flood formation. In K. Střelcová, C. Matyas, A. Kleidon, M. Lapin, F. Matejka, M. Blazenec, J. Škvarenina & J. Holécy (Eds.), Bioclimatology and Natural Hazards (pp. 119–128). Netherlands: Springer. DOI: 10.1007/978-1-4020-8876-610.

  • Hríbik, M., Vida, T., Škvarenina, J., Škvareninová, J. & Ivan L. (2012). Hydrological effects of Norway spruce and European beech on snow cover in a mid-mountain region of the Polana Mts., Slovakia. Journal of Hydrology and Hydromechanics, 60, 319–332. DOI: 10.2478/v10098-012-0028-x.

  • Jain, S.K., Goswami, A. & Saraf A.K. (2009). Role of elevation and aspect in snow distribution in Western Himalaya. Water Resources Management, 23(1), 71–83. DOI: 10.1007/s11269-008-9265-5.

  • Jost, G., Weiler, M., Gluns, D. & Alila, Y. (2007). The influence of forest and topography on snow accumulation and melt at the watershed-scale. J. Hydrol., 347, 101–115. DOI: 10.1016/j.jhydrol.2007.09.006.

  • Kadlec, V. & Kovář P. (2008). Use of rainfall-runoff model KINFIL on Hučava catchment (in Slovak). Správy Lesníckeho Výskumu, 53, 211–222.

  • Kirchner, P.B., Bales, R.C., Molotch, N.P., Flanagan, J. & Guo Q. (2014). LiDAR measurement of seasonal snow accumulation along an elevation gradient in the southern Sierra Nevada, California, Hydrological Earth System Sciences, 18, 4261–4275. DOI: 10.5194/hess-184261-2014.

  • Kuz’min, P.P. (1960). Snow accumulation and methods of estimating snow water equivalents (in Russian). Hydrometeoizdat.

  • Lehning, M., Löwe, H., Ryser, M. & Raderschall N. (2008). Inhomogeneous precipitation distribution and snow transport in steep terrain. Water Resources Research, 44, W07404. DOI: 10.1029/2007wr006545.

  • Litaor, M.I., Williams, M. & Seastedt T.R. (2008). Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J. Geophys. Res.-Biogeo., 113, G02008. DOI: 10.1029/2007jg000419.

  • Liu, C., Ikeda, K., Thompson, G., Rasmussen, R., & Dudhia J. (2011). High-resolution simulations of wintertime precipitation in the Colorado Headwaters Region: Sensitivity to physics parameterizations. Monthly Weather Review, 139, 3533–3553. DOI: 10.1175/mwr-d-11-00009.1.

  • Lopez-Moreno, J.I. & Vicente-Serrano S.M. (2007). Atmospheric circulation influence on the interannual variability of snow pack in the Spanish Pyrenees during the second half of the 20th century. Hydrology Research, 38, 33–34. DOI: 10.2166/nh.2007.030.

  • Lopez-Moreno, J.I. & Stähli M. (2008). Statistical analysis of the snow cover variability in a subalpine watershed: Assessing the role of topography and forest, interactions. J. Hydrol., 348, 379–394. DOI: 10.1016/j.jhydrol.2007.10.018.

  • López-Moreno, J.I., Revuelto, J., Fassnacht, S., Azorín-Molina, C., Vicente-Serrano, S. M., Morán-Tejeda, E. & Sexstone G. (2015). Snowpack variability across various spatio-temporal resolutions. Hydrological Processes, 29, 1213–1224. DOI: 10.1002/hyp.10245.

  • Luce, C.H., Tarboton, D.G. & Cooley K.R. (1998). The influence of the spatial distribution of snow on basin-averaged snowmelt. Hydrological Processes, 12, 1671–1683. DOI: 10.1002/(SICI)1099-1085(199808/09)12:10/11<1671::AIDHYP688>3.0.CO;2-N.

  • Lundquist, J.D. & Dettinger M.D. (2005). How snowpack heterogeneity affects diurnal streamflow timing. Water Resources Research, 41, W05007. DOI: 10.1029/2004wr003649.

  • Minďáš, J. & Škvarenina J. (1995). Chemical composition of fog cloud and rain snow water in Biosphere Reserve Pol'ana. Ekológia (Bratislava), 14, 125–137.

  • Minďáš, J. (2003). Characteristics of snow cover regime in forest stands of midmountain region Poľana (in Slovak). Lesnícky Časopis, 49, 105–115.

  • Peng, S., Piao, S., Ciais, Ph., Friedlingstein, P., Zhou, L. & Wang T. (2013). Change in snow phenology and its potential feedback to temperature in the Northern Hemisphere over the last three decades. Environmental Research Letters, 8, 014008. DOI: 10.1088/1748-9326/8/1/014008.

  • Pomeroy, J.W., Parviainen, J., Hedstrom, N.R. & Gray D.M. (1998). Coupled modelling of forest snow interception and sublimation. Hydrological Processes, 12, 1592–2337. DOI: 10.1002/(SICI)1099-1085(199812)12:15<2317::AIDHYP799>3.0.CO;2-X.

  • Pomeroy, J.W., Gray, D.M., Hedstrom, N.R. & Janowicz J.R. (2002). Prediction of seasonal snow accumulation in cold climate forests. Hydrological Processes, 16, 3543–3558. DOI: 10.1002/hyp.1228.

  • Roe, G.H. & Baker M.B. (2006). Microphysical and geometrical controls on the pattern of orographic precipitation. Journal of Atmospheric Science, 63, 861–880. DOI: 10.1175/jas3619.1.

  • Talbot, J., Plamondon, A.P., Lévesque, D., Aubé, D., Prévos, M., Chazalmartin, F. & Gnocchini M. (2006). Relating snow dynamics and balsam fir stand characteristics, Montmorency Forest, Quebec. Hydrological Processes, 20, 1187–1199. DOI: 10.1002/hyp.5938.

  • Toews, D.A. & Gluns D.R. (1986). Snow accumulation and ablation on adjacent forested and clearcut sites in southeastern British Columbia. In Western Snow Conference (USA), 15-17 April 1986 (pp. 101–111). Phoenix, Arizona (USA).

  • Trujillo, E., Ramirez, J.A. & Elder K.J. (2007). Topographic, meteorologic, and canopy controls on the scaling characteristics of the spatial distribution of snow depth fields. Water Resources Research, 43, 1–17. DOI: 10.1029/2006WR005317.

  • Winkler, R.D., Spittlehouse, D.L. & Golding D.L. (2005). Measured differences in snow accumulation and melt among clearcut, juvenile, and mature forests in southern British Columbia. Hydrological Processes, 19, 51–62. DOI: 10.1002/hyp.5757.


Journal + Issues