Impact of Water-Induced Processes on the Development of Tarns and Their Basins in the High Tatras

Open access

Abstract

In the report we concentrate on the influences of water-induced morphodynamic processes and surface flow on the development of tarns in alpine environment conditions of selected valleys in the High Tatras. Model areas are represented by higher basins parts in the Malá Studená valley and the Veľká Studená valley, where we confirmed that slope-gravitational processes in the form of rockfall, water-gravitational processes in the form of debris flows, but also fluvial-proluvial processes as the accumulation of the soft fractions from the area of debris cones take part in the material deposition in the tarns. In this context we focused on the creation of the model of spatial distribution of the water-induced potential of material deposition in drainage tarn basins. The model includes three basic factors: slope and curvature of the relief and land cover character. Map processing with GIS technologies was done on the basis of a 3-D relief model, which allowed the locating of the local erosion bases areas, where the material could be accumulated. The achieved results confirmed the hypothesis that tarn basin development of the alpine environment is subordinated to permanent backfilling as a consequence of the cumulative influence of the several processes connected with rainfall and the runoff regime of the drainage basins.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Addison K. (1987). Debris flow during intense rainfall in Snowdonia North Wales: a preliminary survey. Earth Surface Processes and Landforms 12(5) 561–566. DOI: 10.1002/esp.3290120513.

  • Bochníček O. Lapin M. & Soták Š. (2002). Priemerný ročný počet vykurovacích dní letných a mrazových dní. In Atlas krajiny Slovenskej republiky (p. 98). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Chau K.T. & Lo K.H. (2004). Hazard assessment of debris flows for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations. Natural Hazards and Earth System Science 4(1) 103–116.

  • Chen H. (2006). Controlling factors of hazardous debris flow in Taiwan. Quarternary International 147 3–15. DOI: 10.1016/j.quaint.2005.09.002.

  • Deline P. Chiarle M. & Mortara G. (2004). The July 2003 Frebouge debris flows (Mont Blanc Massif Valley of Acosta Italy): Water pocket outburst flood and ice avalanche damming. Geografia Fisica e Dinamica Quaternaria 27(2) 107–111.

  • Esprit s.r.o. (2013). Mapa digitálneho modelu reliéfu mierka 1: 10 000. Banská Štiavnica: Esprit.

  • Faško P. & Šťastný P. (2002a). Priemerné ročné úhrny zrážok. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Faško P. & Šťastný P. (2002b). Absolútne maximum mesačných a denných úhrnov zrážok. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Faško P. & Šťastný P. (2002c). Priemerné úhrny zrážok v januári. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Faško P. & Šťastný P. (2002d). Priemerné úhrny zrážok v júli. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Faško P. Handžák Š. & Šrámková N. (2002). Počet dní so snehovou pokrývkou a jej priemerná výška. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Fussgänger E. & Jadroň D. (2001). Vplyv súčasných klimatických pomerov na vývoj svahových gravitačných pohybov. In Geológia a životné prostredie: Zborník referátov z 2. konferencie (pp. 15–18). Bratislava: Štátny geologický ústav D. Štúra.

  • García R. López J.L. Noya M. Bello M.E. Bello M.T. González N. Chang S.Y. Paredes G. Vivas M.I. & O’Brien J.S. (2003). Hazard mapping for debris-flow events debris flows and warning road traffic at in the alluvial fans of northern Venezuela bridges susceptible to debris-flow. In D. Rickenmann & C. Chen (Eds.) 3rd Int. Conf. on Debris-Flow Hazards Mitigation (pp. 589–599). Rotterdam: Millpress.

  • Glade T. (2005). Linking debris-flow hazard assessments with geomorphology. Geomorphology 66(1–4) 189–213. DOI: 10.1016/j.geomorph.2004.09.023.

  • Guzzetti F. Carrara A. Cardinali M. & Reichenbach P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study central Italy. Geomorphology 31(1–4) 181–216. DOI: 10.1016/S0169-555X(99)00078-1.

  • Google Earth (2004). Ortofotosnímka Vysokých Tatier Veľká a Malá Studená dolina. Google earth Image©2014 Eurosense/Geodis Slovakia.

  • Grass Development Team (2011). Free softvare (GRASS – Geographical Resources Analysis Support System). http://grass.osgeo.org > < http://www.grass-gis.org >

  • Gregor V. (1965). Využitie fotogrametrie pri špeciálnych úlohách vo vysokohorských terénoch. Geodetický a Kartografický Obzor 11(53) 1 17–20.

  • Gregor V. (2005). Meranie tatranských plies. Geodetický a Kartografický Obzor 51/93 1 9–14.

  • Gregor. V. & Pacl J. (2003). Zanášanie tatranských plies. Tatry 1(42) 12–13.

  • Gregor V. & Pacl J. (2004). Zanášanie tatranských plies II. Tatry 1(43) 12–13.

  • Gregor V. & Pacl J. (2005). Hydrológia tatranských jazzier. Acta Hydrologica Slovaca 6(1) 161–187.

  • Hofmeister R.J. Miller D.J. Mills K.A. Hinkle J.C. & Beier A.E. (2002). GIS overview map of potential rapidly moving landslide hazards in western Oregon. IMS22-Text. Oregon: Oregon Department of Geology and Mineral Industries Portland. https://www.wou.edu/las/physci/taylor/erth350/IMS-22.pdf

  • Houdek I. (1943). Tatranské plesá. Zborník Muzeálnej Slovenskej Spoločnosti 36/37 246–259.

  • Hreško J. Bugár G. Petrovič F. Mačutek J. & Kanásová D. (2012) Morphodynamic effects on lacustrine deposits in the High Tatras Mts. Ekológia (Bratislava) 31(4) 390–404. DOI: 10.4149/ekol_2012_04_390.

  • Huggel C. Kääb A. & Haeberli W. (2003). Regional-scale models of debris flows triggered by lake outbursts: the 25 June 2001 debris flow at Täsch (Switzerland) as a test study. In D. Rickenmann & C. Chen (Eds.) 3rd Int. Conf. on Debris-flow hazards mitigation (pp. 1151–1162). Rotterdam: Millpress.

  • Hürlimann M. Copons R. & Altimir J. (2006). Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology 78(3–4) 359–372. DOI: 10.1016/j.geomorph.2006.02.003.

  • Iverson R.M. Schilling S.P. & Vallance J.W. (1998). Objective delineation of lahar-inundation hazard zones. Geological Society American Bulletin 110(8) 972–984. DOI: 10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2.

  • Jakob M. & Hungr O. (2005). Debris-flow hazards and related phenomena. Berlin: Springer.

  • Jomelli V. Pech V.P. Chochillon C. & Brunstein D. (2004). Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim. Change 64(1–2) 77–102. DOI: 10.1023/B:CLIM.0000024700.35154.44.

  • Kapusta J. Stankoviansky M. & Boltižiar M. (2010). Changes in activity and geomorphic effectiveness of debris flows in the High Tatra Mts. within the last six decades (on the example of the Velická dolina and Dolina Zeleného plesa valleys). Studia Geomorphologica Carpatho-Balcanica 44 5–34.

  • Kopecký M. (2001). Vplyv klimatických a hydrogeologických pomerov na vznik zosuvov. PhD. Thesis Katedra inžinierskej geológie Univerzita Komenského v Bratislave.

  • Kotarba A. (1992). High energy geomorphologic events in the Polish Tatra Mountains. Geogr. Ann. 74A 123–131.

  • Kotarba A. (2005). Wspólczesne przemiany rzeźby Tatr i innych wysokich gór Europy pod wplywem splywów gruzowych. Przyroda Tatrzańskiego Parku Narodowego a Człowiek pp. 35–40.

  • Kotarba A. (2007). Geomorphic activity of debris flows in the Tatra Mts. and in other European mountains. Geographia Polonica 80(2) 137–150.

  • Kotarba A. Rączkowska Z. Długosz M. & Boltižiar M. (2013). Recent debris flowsin the Tatra Mountains. In D. Loczy (Ed.) Geomorphological impact of extremeweather: Case studies from central and eastern Europe (pp. 221–236). Dordrecht:Springer. DOI: 10.1007/978-94-007-6301-2.

  • Krcho J. (1990). Morfometrická analýza a digitálne modely georeliéfu. Bratislava: VEDA vydavateľstvo SAV.

  • Lapin M. Faško P. Melo M. Šťastný P. & Tomlain J. (2002). Klimatické oblasti. In Atlas krajiny Slovenskej republiky (p. 95). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Larsen I.J. Pederson J.L. & Schmidt J.C. (2006). Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument. Geomorphology 81(1–2) 114–127. DOI: 10.1016/j.geomorph.2006.04.002.

  • Larsson S. (1982). Geomorphological effects on the slopes of Longyear Valley Spitsbergen after a heavy rainstorm in July 1972. Geografiska Annaler Series A Physical Geography 64(3–4) 105–125.

  • Lešková D. & Majerčáková O. (2002). Priemerný ročný špecifický odtok. In Atlas krajiny Slovenskej republiky (p. 102). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Lin P.-S. Lin J.-Y. Hung J.-C. & Yang M.-D. (2002). Assessing debris-flow hazard in a watershed in Taiwan. Engineering Geology 66(3–4) 295–313. DOI: 10.1016/S0013-7952(02)00105-9.

  • Liu X. & Lei J. (2003). A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology 52(3–4) 181–191. DOI: 10.1016/S0169-555X(02)00242-8.

  • Lukniš M. (1973). Reliéf Vysokých Tatier a ich predpolia. Bratislava: SAV.

  • Majerčáková O. (2002). Povodia hlavných tokov s hydrologickou bilanciou. In Atlas krajiny Slovenskej republiky (p.102). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Maličký M. (2012). Fotografie z Prostredného hrotu. Martin Maličký 10.9.2012.

  • Malík P. & Švasta J. (2002). Hlavné hydrogeologické region. In Atlas krajiny Slovenskej republiky (p. 104). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Mark R.K. & Ellen S.D. (1995). Statistical and simulation models for mapping debris-flow hazard. In A. Carrara & F. Guzzetti (Eds.) Geographical information systems in assessing natural hazards (pp. 93–106). Dordrecht: Kluwer Academic Publishers.

  • Melillo M. Brunetti M.T. Peruccacci S. Gariano S.L. & Guzetti F. (2016). Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 13(1) 165–172. DOI: 10.1007/s10346-015-0630-1.

  • Mergili M. Schratz K. Ostermann A. & Fellin W. (2011). A GRASS GIS implementation of the Savage-Hutter avalanche model and its application to the 1987 Val Pola event. In Proceedings of the Second World Landslide Forum (pp. 1–6). 3-7. 10. 2011 Rome. http://www.mergili.at/publications/mergili_et_al_inpressa.pdf

  • Nemčok J. (ed.) (1993). Vysvetlivky ku geologickej mape Tatier 1:50 000. Bratislava: GÚDŠ.

  • Niedźwiedź T. (2003). Extreme precipitation events on the northern side of the Tatra Mountains. Geogr. Pol. 76(2) 15–23.

  • Pacl J. (1999). Podiel pozemnej stereofotogrametrie pri mapovaní tatranských plies. In Interdisciplinárne aplikácie KG SvF (pp. 1–5). Bratislava: STU.

  • Pallas R. Vilaplana J.M. Guinau M. Falgas E. Alemany X. & Munoz A. (2004). A pragmatic approach to debris flow hazard mapping in areas affected by Hurricane Mitch: example from NW Nicaragua. Engineering Geology 72(1–2) 57–72. DOI: 10.1016/j.enggeo.2003.06.002.

  • Pasuto A. & Soldati M. (2004). An integrated approach for hazard assessment and mitigation of debris flows in the Italian Dolomites. Geomorphology 61(1–2) 59–70. DOI: 10.1016/j.geomorph.2003.11.006.

  • Pavlova I. Jomelli V. Grancher D. Brunstein D. & Vrac M. (2011). Debris flow occurrence and meteorological factors in the French Alps: A regional investigation. In 5th International Conference on debris-flow hazards mitigation: Mechanics prediction and assessment (pp. 127–134). 14-17 June 2011 Padua. DOI: 10.4408/IJEGE.2011-03.B-015.

  • Pavlova I. Jomelli V. Brunstein D. Grancher D. Martin E. & Déqué M. (2014). Debris flow activity related to recent climate conditions in the French Alps: A regional investigation. Geomorphology 219 248–259. DOI: 10.1016/j.geomorph.2014.04.025.

  • Quantum Gis (QGIS) (2010). Version 1.7.0 - Wroclaw Built against code revision 63ecdd7. Is licensed under the GNU General Public Licence (www.gnu.org/licenses) free softvere.

  • Šály R. (2006). Pôdy alpínskeho a subalpínskeho stupňa Západných Karpát. Zvolen: TU.

  • Šimo E. & Zaťko M. (2002). Typy režimu odtoku. In Atlas krajiny Slovenskej republiky (p. 102). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Šobr M. & Česák J. (2006). Methodology and results of bathymetric measurements of the selected High Tatras glacial lakes. Acta Universitatis Carolinae Environmentalica 20 109–120.

  • Šťastný P. Nieplová E. & Melo M. (2002a). Priemerná teplota vzduchu v januári. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Šťastný P. Nieplová E. & Melo M. (2002b). Priemerná teplota vzduchu v júli. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Tomko-Králo D. (2012). Morfodynamické procesy vysokohorskej krajiny Vysokých Tatier (Malá a Veľká Studená dolina). Bakalárska práca UKF Nitra.

  • Tomko-Králo D. (2014). Súčasný morfodynamický vývoj Veľkej a Malej Studenej s dôrazom na zasypávanie a zanášanie plies. Diplomová práca UKF Nitra.

  • Tomlain J. (2002). Priemerné ročné hodnoty klimatického ukazovateľa zavlaženia. In Atlas krajiny Slovenskej republiky (p. 95). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Tomlain J. & Hrvoľ J. (2002). Globálne žiarenie a relatívne trvanie slnečného svitu. In Atlas krajiny Slovenskej republiky (p. 96). Bratislava: MŽP SR Banská Štiavnica: Esprit.

  • Vallance J.W. Cunico M.L. & Schilling S.P. (2003). Debris-flow hazards caused by hydrologic events at Mount Rainier. Open-file Report 03-368. Vancouver Washington: USGS.

  • Vološčuk I. a kol. (1994). Tatranský národný park: Biosférická rezervácia. Martin: Gradus.

  • Zimmermann M. & Haeberli W. (1992). Climatic change and debris flow activity in high-mountain areas - a case study in the Swiss Alps. Catena 22(Suppl.) 59–72.

Search
Journal information
Impact Factor


CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 238 128 1
PDF Downloads 165 105 4