Impact of Water-Induced Processes on the Development of Tarns and Their Basins in the High Tatras

Dávid Tomko-Králo 1 , Juraj Hreško 1 , and Imrich Jakab 1
  • 1 Department of Ecology and Environmental Sciences, Faculty of Natural Sciences CPU in Nitra, 949 74, Nitra

Abstract

In the report we concentrate on the influences of water-induced morphodynamic processes and surface flow on the development of tarns in alpine environment conditions of selected valleys in the High Tatras. Model areas are represented by higher basins parts in the Malá Studená valley and the Veľká Studená valley, where we confirmed that slope-gravitational processes in the form of rockfall, water-gravitational processes in the form of debris flows, but also fluvial-proluvial processes as the accumulation of the soft fractions from the area of debris cones take part in the material deposition in the tarns. In this context we focused on the creation of the model of spatial distribution of the water-induced potential of material deposition in drainage tarn basins. The model includes three basic factors: slope and curvature of the relief and land cover character. Map processing with GIS technologies was done on the basis of a 3-D relief model, which allowed the locating of the local erosion bases areas, where the material could be accumulated. The achieved results confirmed the hypothesis that tarn basin development of the alpine environment is subordinated to permanent backfilling as a consequence of the cumulative influence of the several processes connected with rainfall and the runoff regime of the drainage basins.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Addison, K. (1987). Debris flow during intense rainfall in Snowdonia, North Wales: a preliminary survey. Earth Surface Processes and Landforms, 12(5), 561–566. DOI: 10.1002/esp.3290120513.

  • Bochníček, O., Lapin, M. & Soták Š. (2002). Priemerný ročný počet vykurovacích dní, letných a mrazových dní. In Atlas krajiny Slovenskej republiky (p. 98). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Chau, K.T. & Lo K.H. (2004). Hazard assessment of debris flows for Leung King Estate of Hong Kong by incorporating GIS with numerical simulations. Natural Hazards and Earth System Science, 4(1), 103–116.

  • Chen, H. (2006). Controlling factors of hazardous debris flow in Taiwan. Quarternary International, 147, 3–15. DOI: 10.1016/j.quaint.2005.09.002.

  • Deline, P., Chiarle, M. & Mortara G. (2004). The July 2003 Frebouge debris flows (Mont Blanc Massif, Valley of Acosta, Italy): Water pocket outburst flood and ice avalanche damming. Geografia Fisica e Dinamica Quaternaria, 27(2), 107–111.

  • Esprit s.r.o. (2013). Mapa digitálneho modelu reliéfu, mierka 1: 10 000. Banská Štiavnica: Esprit.

  • Faško, P. & Šťastný P. (2002a). Priemerné ročné úhrny zrážok. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Faško, P. & Šťastný P. (2002b). Absolútne maximum mesačných a denných úhrnov zrážok. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Faško, P. & Šťastný P. (2002c). Priemerné úhrny zrážok v januári. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Faško, P. & Šťastný P. (2002d). Priemerné úhrny zrážok v júli. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Faško, P., Handžák, Š. & Šrámková N. (2002). Počet dní so snehovou pokrývkou a jej priemerná výška. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Fussgänger, E. & Jadroň D. (2001). Vplyv súčasných klimatických pomerov na vývoj svahových gravitačných pohybov. In Geológia a životné prostredie: Zborník referátov z 2. konferencie (pp. 15–18). Bratislava: Štátny geologický ústav D. Štúra.

  • García, R., López, J.L., Noya, M., Bello, M.E., Bello, M.T., González, N., Chang, S.Y., Paredes, G., Vivas, M.I. & O’Brien J.S. (2003). Hazard mapping for debris-flow events debris flows and warning road traffic at in the alluvial fans of northern Venezuela bridges susceptible to debris-flow. In D. Rickenmann & C. Chen (Eds.), 3rd Int. Conf. on Debris-Flow Hazards Mitigation (pp. 589–599). Rotterdam: Millpress.

  • Glade, T. (2005). Linking debris-flow hazard assessments with geomorphology. Geomorphology, 66(1–4), 189–213. DOI: 10.1016/j.geomorph.2004.09.023.

  • Guzzetti, F., Carrara, A., Cardinali, M. & Reichenbach P. (1999). Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, central Italy. Geomorphology, 31(1–4), 181–216. DOI: 10.1016/S0169-555X(99)00078-1.

  • Google Earth (2004). Ortofotosnímka Vysokých Tatier Veľká a Malá Studená dolina. Google earth, Image©2014 Eurosense/Geodis Slovakia.

  • Grass Development Team (2011). Free softvare (GRASS – Geographical Resources Analysis Support System). http://grass.osgeo.org >, < http://www.grass-gis.org >

  • Gregor, V. (1965). Využitie fotogrametrie pri špeciálnych úlohách vo vysokohorských terénoch. Geodetický a Kartografický Obzor, 11(53), 1, 17–20.

  • Gregor, V. (2005). Meranie tatranských plies. Geodetický a Kartografický Obzor, 51/93, 1, 9–14.

  • Gregor. V. & Pacl J. (2003). Zanášanie tatranských plies. Tatry, 1(42), 12–13.

  • Gregor, V. & Pacl J. (2004). Zanášanie tatranských plies II. Tatry, 1(43), 12–13.

  • Gregor, V. & Pacl J. (2005). Hydrológia tatranských jazzier. Acta Hydrologica Slovaca, 6(1), 161–187.

  • Hofmeister, R.J., Miller, D.J., Mills, K.A., Hinkle, J.C. & Beier A.E. (2002). GIS overview map of potential rapidly moving landslide hazards in western Oregon. IMS22-Text. Oregon: Oregon Department of Geology and Mineral Industries, Portland. https://www.wou.edu/las/physci/taylor/erth350/IMS-22.pdf

  • Houdek, I. (1943). Tatranské plesá. Zborník Muzeálnej Slovenskej Spoločnosti, 36/37, 246–259.

  • Hreško, J., Bugár, G., Petrovič, F., Mačutek, J. & Kanásová D. (2012) Morphodynamic effects on lacustrine deposits in the High Tatras Mts. Ekológia (Bratislava), 31(4), 390–404. DOI: 10.4149/ekol_2012_04_390.

  • Huggel, C., Kääb, A. & Haeberli W. (2003). Regional-scale models of debris flows triggered by lake outbursts: the 25 June 2001 debris flow at Täsch (Switzerland) as a test study. In D. Rickenmann & C. Chen (Eds.), 3rd Int. Conf. on Debris-flow hazards mitigation (pp. 1151–1162). Rotterdam: Millpress.

  • Hürlimann, M., Copons, R. & Altimir J. (2006). Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach. Geomorphology, 78(3–4), 359–372. DOI: 10.1016/j.geomorph.2006.02.003.

  • Iverson, R.M., Schilling, S.P. & Vallance J.W. (1998). Objective delineation of lahar-inundation hazard zones. Geological Society American Bulletin, 110(8), 972–984. DOI: 10.1130/0016-7606(1998)110<0972:ODOLIH>2.3.CO;2.

  • Jakob, M. & Hungr O. (2005). Debris-flow hazards and related phenomena. Berlin: Springer.

  • Jomelli, V., Pech, V.P., Chochillon, C. & Brunstein D. (2004). Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim. Change, 64(1–2), 77–102. DOI: 10.1023/B:CLIM.0000024700.35154.44.

  • Kapusta, J., Stankoviansky, M. & Boltižiar M. (2010). Changes in activity and geomorphic effectiveness of debris flows in the High Tatra Mts. within the last six decades (on the example of the Velická dolina and Dolina Zeleného plesa valleys). Studia Geomorphologica Carpatho-Balcanica, 44, 5–34.

  • Kopecký, M. (2001). Vplyv klimatických a hydrogeologických pomerov na vznik zosuvov. PhD. Thesis, Katedra inžinierskej geológie, Univerzita Komenského v Bratislave.

  • Kotarba, A. (1992). High energy geomorphologic events in the Polish Tatra Mountains. Geogr. Ann., 74A, 123–131.

  • Kotarba, A. (2005). Wspólczesne przemiany rzeźby Tatr i innych wysokich gór Europy pod wplywem splywów gruzowych. Przyroda Tatrzańskiego Parku Narodowego a Człowiek, pp. 35–40.

  • Kotarba, A. (2007). Geomorphic activity of debris flows in the Tatra Mts. and in other European mountains. Geographia Polonica, 80(2), 137–150.

  • Kotarba, A., Rączkowska, Z., Długosz, M. & Boltižiar M. (2013). Recent debris flowsin the Tatra Mountains. In D. Loczy (Ed.), Geomorphological impact of extremeweather: Case studies from central and eastern Europe (pp. 221–236). Dordrecht:Springer. DOI: 10.1007/978-94-007-6301-2.

  • Krcho, J. (1990). Morfometrická analýza a digitálne modely georeliéfu. Bratislava: VEDA, vydavateľstvo SAV.

  • Lapin, M., Faško, P., Melo, M., Šťastný, P. & Tomlain J. (2002). Klimatické oblasti. In Atlas krajiny Slovenskej republiky (p. 95). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Larsen, I.J., Pederson, J.L. & Schmidt J.C. (2006). Geologic versus wildfire controls on hillslope processes and debris flow initiation in the Green River canyons of Dinosaur National Monument. Geomorphology, 81(1–2), 114–127. DOI: 10.1016/j.geomorph.2006.04.002.

  • Larsson, S. (1982). Geomorphological effects on the slopes of Longyear Valley, Spitsbergen, after a heavy rainstorm in July 1972. Geografiska Annaler, Series A, Physical Geography, 64(3–4), 105–125.

  • Lešková, D. & Majerčáková O. (2002). Priemerný ročný špecifický odtok. In Atlas krajiny Slovenskej republiky (p. 102). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Lin, P.-S., Lin, J.-Y., Hung, J.-C. & Yang M.-D. (2002). Assessing debris-flow hazard in a watershed in Taiwan. Engineering Geology, 66(3–4), 295–313. DOI: 10.1016/S0013-7952(02)00105-9.

  • Liu, X. & Lei J. (2003). A method for assessing regional debris flow risk: an application in Zhaotong of Yunnan province (SW China). Geomorphology, 52(3–4), 181–191. DOI: 10.1016/S0169-555X(02)00242-8.

  • Lukniš, M. (1973). Reliéf Vysokých Tatier a ich predpolia. Bratislava: SAV.

  • Majerčáková, O. (2002). Povodia hlavných tokov s hydrologickou bilanciou. In Atlas krajiny Slovenskej republiky (p.102). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Maličký, M. (2012). Fotografie z Prostredného hrotu. Martin Maličký, 10.9.2012.

  • Malík, P. & Švasta J. (2002). Hlavné hydrogeologické region. In Atlas krajiny Slovenskej republiky (p. 104). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Mark, R.K. & Ellen S.D. (1995). Statistical and simulation models for mapping debris-flow hazard. In A. Carrara & F. Guzzetti (Eds.), Geographical information systems in assessing natural hazards (pp. 93–106). Dordrecht: Kluwer Academic Publishers.

  • Melillo, M., Brunetti, M.T., Peruccacci, S., Gariano, S.L. & Guzetti F. (2016). Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides, 13(1), 165–172. DOI: 10.1007/s10346-015-0630-1.

  • Mergili, M., Schratz, K., Ostermann, A. & Fellin W. (2011). A GRASS GIS implementation of the Savage-Hutter avalanche model and its application to the 1987 Val Pola event. In Proceedings of the Second World Landslide Forum (pp. 1–6). 3-7. 10. 2011, Rome. http://www.mergili.at/publications/mergili_et_al_inpressa.pdf

  • Nemčok, J. (ed.) (1993). Vysvetlivky ku geologickej mape Tatier 1:50 000. Bratislava: GÚDŠ.

  • Niedźwiedź, T. (2003). Extreme precipitation events on the northern side of the Tatra Mountains. Geogr. Pol., 76(2), 15–23.

  • Pacl, J. (1999). Podiel pozemnej stereofotogrametrie pri mapovaní tatranských plies. In Interdisciplinárne aplikácie KG SvF (pp. 1–5). Bratislava: STU.

  • Pallas, R., Vilaplana, J.M., Guinau, M., Falgas, E., Alemany, X. & Munoz A. (2004). A pragmatic approach to debris flow hazard mapping in areas affected by Hurricane Mitch: example from NW Nicaragua. Engineering Geology, 72(1–2), 57–72. DOI: 10.1016/j.enggeo.2003.06.002.

  • Pasuto, A. & Soldati M. (2004). An integrated approach for hazard assessment and mitigation of debris flows in the Italian Dolomites. Geomorphology, 61(1–2), 59–70. DOI: 10.1016/j.geomorph.2003.11.006.

  • Pavlova, I., Jomelli, V., Grancher, D., Brunstein, D. & Vrac M. (2011). Debris flow occurrence and meteorological factors in the French Alps: A regional investigation. In 5th International Conference on debris-flow hazards mitigation: Mechanics, prediction, and assessment (pp. 127–134). 14-17, June, 2011, Padua. DOI: 10.4408/IJEGE.2011-03.B-015.

  • Pavlova, I., Jomelli, V., Brunstein, D., Grancher, D., Martin, E. & Déqué M. (2014). Debris flow activity related to recent climate conditions in the French Alps: A regional investigation. Geomorphology, 219, 248–259. DOI: 10.1016/j.geomorph.2014.04.025.

  • Quantum Gis (QGIS) (2010). Version 1.7.0 - Wroclaw, Built against code revision 63ecdd7. Is licensed under the GNU General Public Licence (www.gnu.org/licenses), free softvere.

  • Šály, R. (2006). Pôdy alpínskeho a subalpínskeho stupňa Západných Karpát. Zvolen: TU.

  • Šimo, E. & Zaťko M. (2002). Typy režimu odtoku. In Atlas krajiny Slovenskej republiky (p. 102). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Šobr, M. & Česák J. (2006). Methodology and results of bathymetric measurements of the selected High Tatras glacial lakes. Acta Universitatis Carolinae Environmentalica, 20, 109–120.

  • Šťastný, P., Nieplová, E. & Melo M. (2002a). Priemerná teplota vzduchu v januári. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Šťastný, P., Nieplová, E. & Melo M. (2002b). Priemerná teplota vzduchu v júli. In Atlas krajiny Slovenskej republiky (p. 99). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Tomko-Králo, D. (2012). Morfodynamické procesy vysokohorskej krajiny Vysokých Tatier (Malá a Veľká Studená dolina). Bakalárska práca, UKF, Nitra.

  • Tomko-Králo, D. (2014). Súčasný morfodynamický vývoj Veľkej a Malej Studenej s dôrazom na zasypávanie a zanášanie plies. Diplomová práca, UKF, Nitra.

  • Tomlain, J. (2002). Priemerné ročné hodnoty klimatického ukazovateľa zavlaženia. In Atlas krajiny Slovenskej republiky (p. 95). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Tomlain, J. & Hrvoľ J. (2002). Globálne žiarenie a relatívne trvanie slnečného svitu. In Atlas krajiny Slovenskej republiky (p. 96). Bratislava: MŽP SR, Banská Štiavnica: Esprit.

  • Vallance, J.W., Cunico, M.L. & Schilling S.P. (2003). Debris-flow hazards caused by hydrologic events at Mount Rainier. Open-file Report 03-368. Vancouver, Washington: USGS.

  • Vološčuk, I. a kol. (1994). Tatranský národný park: Biosférická rezervácia. Martin: Gradus.

  • Zimmermann, M. & Haeberli W. (1992). Climatic change and debris flow activity in high-mountain areas - a case study in the Swiss Alps. Catena, 22(Suppl.), 59–72.

OPEN ACCESS

Journal + Issues

Search