Quantification of the Natural Factors’ Impact Effectiveness on Environmental Hazards – Slope Movements in the Flysch Areas of the Kysuce Region

Mária Barančoková 1 , Zdena Krnáčová 1 , and Silvia Chasníková 1
  • 1 Institute of Landscape Ecology, Slovak Academy of Sciences, 814 99, Bratislava


The flysch areas belong to the territories with highest occurrence of landslides in Slovakia. Almost 67% of all landslides in Slovakia take place within the Carpathian flysch. It is a type of slope deformation that responds sensitively to the quality of individual factors that form the landscape and to the change in natural conditions. The occurrence of various geodynamic phenomena can be understood as a geological barrier that reduces or inhibits the use of natural environment and negatively affects the life of society and territorial development. In this paper, we evaluate the statistical significance of selected natural factors of the landscape in relation to the occurrence of unstable slopes in the Kysuce region. In addition, we also evaluated the expansion of unstable slopes in individual landscape factors. Significant linkages between the variables’ hydrogeological base_sandstones with thin clay layers (HB_s) and geological-substrate complex_loamy wastes to loamy-stony debris on sandy conglomerates (GSC_sc) (R = 0.95, p = 0.002) and secondary significant linkages between the variables soil type: Dystric Cambisols (S_CMd) and HB_s (R = 0.40, p = 0.002) (Klokočov and Zákopčie cadastres) were observed. Significant correlation of variables within the areas with unstable slopes was also observed between hydrogeological base_sandy flysch (HB_sf) and geological-substrate complex_loamy wastes on flysch stones (GSC_fs) (R = 0.81, p = 0.002) (Nová Bystrica and Kysucké Nové Mesto cadastres). The most unstable slopes occur in Nová Bystrica cadastre (34.62% of the area) and in the Klokočov cadastre (28.25% of the area). The inclination of slopes (especially slopes above 12°) plays an important role within the unstable slopes. Slopes with steep inclination cover up to 81.45% of the cadastral area of Nová Bystrica, of which almost 1/3 are unstable slopes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ahmadi, H. & Esfandarani A.T. (2002). Study of effective factors on mass movements (landslide) (case study: Ardal region of Chaharmahale Bakhtiari province). Iranian Journal of Natural Resources, 54(4), 323–329.

  • Bednarik, M., Clerici, A., Tellini, C. & Vescovi P. (2005). Using GIS GRASS in evaluation of landslide susceptibility in Termina valley in the Northern Appennines (Italy). In Proceedings of the Conference on Engineering Geology: Forum for young engineering geologists, 6–9 April 2005 (pp. 19–24). Erlangen-Nürnberg: DGGT, Fridrich-Alexander-University.

  • Blanco, H. & Lal R. (2008). Principles of soil conservation and management. USA: Springer.

  • Carrara, A., Cardinali, M., Detti, R., Guzzetti, F., Pasqui, V. & Reichenbach P. (1991). GIS techniques and statistical models in evaluating landslide hazard. Earth Surface Processes and Landforms, 16(5), 427–445. DOI: 10.1002/esp.3290160505.

  • Carrara, A., Cardinali, M., Guzzetti, F. & Reichenbach, P. (1995). GIS technology in mapping landslide hazard. Geographical Information Systems in Assessing Natural Hazards, 5, 135–175. DOI: 10.1007/978-94-015-8404-3_8.

  • Diaz, R.P., Sanleandro, M.A., Sanchez, F.B. & Faulkner H. (2006). The causes of piping in a set of abandoned agricultural terraces in southeast Spain. Catena, 17, 233–245.

  • Eberhardt, E.K., Thuro, K. & Luginbuehl M. (2005). Slope instability mechanisms in dipping inter-bedded conglomerates and weathered marls in the 1999 Rufi landslide, Switzerland. Engineering Geology, 77, 35–56. DOI: 10.1016/j.enggeo.2004.08.004

  • Havlín, A., Bednarik, M. & Urbanová K. (2009). Assessment of landslide risk in the Silesia-Slovak border-landslides do not respect boundaries (in Czech). In I. Baroň & J. Klimeš (Eds.), Svahové deformace a pseudokras, 13–15 May 2009 (pp. 1–28). Vsetín: Česká geologická služba, Ústav struktury a mechaniky hornin, AV ČR.

  • Hazelton, P. & Murphy B. (2007). Interpreting soil test results. Sydney: CSIRO Press.

  • Heshmati, M., Arifin, A., Shamshuddin, J., Majid, N.M. & Ghaituri M. (2011). Factors affecting landslides occurrence in agro-ecological zones in the Merek catchment, Iran. J. Arid Environ., 75, 1072–1082. DOI: 10.1016/j.jaridenv.2011.06.011

  • Húska, D. (1981). Forest technical meliorations (in Slovak). Nitra: SPU.

  • Klimeš, J. (2007). Analysis of the conditions of slope deformations in the Vsetínske vrchy Mts (in Czech). Unpublished diploma thesis, Charles University, Prague.

  • Malík, P., Bačová, N., Hronček, S., Ivanič, B., Káčer, Š., Kočický, D., Maglay, J., Marsina, K., Ondrášik, M., Šefčík, P., Černák, R., Švasta, J. & Lexa J. (2007). Geological maps compile at a scale of 1:50 000 for the needs of integrated landscape management (in Slovak). Bratislava: ŠGÚDŠ.

  • Magulová, B. (2009). Using GIS for creation of geohazards map as a base for landuse planning (in Slovak). Acta Geologica Slovaca, 1(1), 25–32.

  • Mazúr, E. & Lukniš M. (1986). Geomorphological division of SSR and ČSSR. Part Slovakia (in Slovak). Bratislava: Slovenská kartografia.

  • Morgan, R.P.C. (2005). Soil erosion and conservation. Oxford, London: Blackwell Publisher.

  • Metelka, V. & Kycl P. (2007). Mapping of slope landslides susceptibility in GIS environment, Miramar, Kostarika (in Czech). In I. Baroň & J. Klimeš (Eds.), Svahové deformace a pseudokras, 29–31 May 2007 (pp. 1–15). Vsetín: Česká geologická služba, Ústav struktury a mechaniky hornin, AV ČR.

  • Ondr, P., Pečenka, J., Polenský, J. & Ciml J. (2016). Effect of land use changes on water run-off from a small catchment in the Czech Republic. Ekológia (Bratislava), 35, 78–89. DOI: 10.1515/eko-2016-0006.

  • Pauditš, P. & Bednarik M. (2002). Using GIS in evaluation of landslide susceptibility in Handlovská kotlina basin. In Proceedings of the 1st European conference on landslide, 24–26 June 2002 (pp. 437–441). Praha: Swets & Zeitlinger, Lisse.

  • Pauditš, P., Vlčko, J. & Jurko J. (2005). Statistic methods in landslide hazard assessment (in Slovak). Mineralia Slovaca, 37(4), 529–538.

  • Pauditš, P. & Bednarik M. (2006). Different interpretations of slope in the statistical evaluation of the landslide hazard (in Slovak). In Geológia a životné prostredie, 14–15 June 2006 (pp. 1–10). Bratislava: ŠGÚDŠ.

  • Preuth, T., Glade, T. & Demoulin A. (2010). Stability analysis of a human-influenced landslide in eastern Belgium. Geo-morphology, 120 (1–2), 38–47. DOI: 10.1016/j.geomorph.2009.09.013.

  • Skokanová, H., Falťan, V. & Havlíček M. (2016). Driving forces of main landscape change processes from past 200 years in central Europe – differences between old democratic and post-socialist countries. Ekológia (Bratislava), 35, 50–65. DOI:10.1515/eko-2016-0004

  • Šimeková, J. & Martinčeková, T. et al. (2006). Atlas maps of slope stability of the Slovak Republic (in Slovak) M 1:50000. Záverečná správa. Bratislava: MŽP SR.

  • Šmilauer, P. & Lepš J. (2014). Multivariate analysis of ecological data using CANOCO 5. Cambridge: Cambridge University Press.

  • Societas Pedologica Slovaca (2014). Morphogenetic classification soil system of Slovakia basal reference taxonomy (in Slovak). Bratislava: NPPC – VÚPOP.

  • Špulerová, J., Drábová, M. & Lieskovský J. (2016). Traditional agricultural landscape and their management in less favoured areas in Slovakia. Ekológia (Bratislava), 35, 1–12. DOI: 10.1515/eko-2016-0001.

  • ter Braak C.J.F. & Šmilauer P. (2012). Canoco 5, Windows release (5.00). Software for multivariate data exploration, testing, and summarization. Wageningen: Biometris, Plant Research International.

  • Žabková, E., Grenčíková, A., Vrábeľ, P., Sluka, V., Frličková, M., Molčan, T., Lenková, M., Buček, L. & Flimmel J. (2003). Kysuca river basin – slope deformation (in Slovak). Geofond. Bratislava: MŽP SR.


Journal + Issues