Composition of microbial PLFAs and correlations with topsoil characteristics in the rare active travertine spring-fed fen

Open access


We studied soil PLFAs composition and specific soil properties among transect of small-scale fen in Stankovany, Slovakia. The aim of this study was to determine potential differences in the microbial community structure of the fen transect and reveal correlations among PLFAs and specific soil characteristics. PCA analyses of 43 PLFAs showed a separation of the samples along the axis largely influenced by i14:0, 16:1ω5, br17:0, 10Me16:0, cy17:0, cy17:1, br18:0 and 10Me17:0. We measured a high correlation of sample scores and distance from fen edge (Kendall’s test τ = 0.857, P < 0.01). Kendall’s test showed a negative correlation of PLFAs content (mol%) and distance from the fen border for Gram (+) bacteria, Actinomycetes, mid-chain branched saturated PLFAs and total PLFAs. The redundancy analysis of the PLFA data set for the eight samples using PLFAs as species and 21 environmental variables identified soil properties significantly associated with the PLFA variables, as tested by Monte Carlo permutation showing most significant environmental variables including dichlormethan extractables, water extractables, Klason lignin, acid-soluble lignin, holocellulose, total extractables, organic matter content, total PLFA amount, bacterial PLFA and total nitrogen negatively correlated to axis 1 and dry weight and carbonate carbon positively correlated to axis 1. The amounts of Klason lignin, acid-soluble lignin, holocellulose total extractables, total PLFA, bacterial PLFA and total nitrogen were significantly correlated positively to the distance from fen border while moisture and total carbonate carbon were correlated negatively.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Allison V.J. & Miller R.M. (2004). Using fatty acids to quantify arbuscular mycorrhizal fungi. In G. Podila & A. Varma (Eds.) Mycorrhizae: basic research and applications (pp. 141−161). New Delhi: I.K. International Pvt. Ltd.

  • Bååth E. (2003). The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol. 45 373-383. DOI: 10.1007/s00248-003-2002-y.

  • Bardgett R.D. Hobbs P.J. & Frostegård A. (1996). Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland. Biol. Fertil. Soils 22 261-264. DOI: 10.1007/bf00382522.

  • Barrios E. (2007). Soil biota ecosystem services and land productivity. Ecological Economics 64 269-285. DOI: 10.1016/j.ecolecon.2007.03.004.

  • Binet S. Gogo S. & Laggoun-Défarge F. (2013). A water-table dependent reservoir model to investigate the effect of drought and vascular plant invasion on peatland hydrology. J. Hydrol. 499 132-139. DOI: 10.1016/j.jhydrol.2013.06.035.

  • Bligh E.G. & Dyer W.J. (1959). A rapid method of total lipide extraction and purification. Can. J. Biochem. Physiol. 37 911−917. DOI: 10.1139/o59-099.

  • Bull I.D. Nisha R.P. Grahame H.H. Ineson P. & Evershed R.P. (2000). Detection and classification of atmospheric methane oxidizing bacteria in soil. Nature 405 175-178. DOI: 10.1038/35012061.

  • Canuel E.A. Cloern J.E. Ringelberg D.B. Guckert J.B. & Rau G.H. (1995). Molecular and isotopic tracers used to examine sources of organic matter and its incorporation into the food webs of San Francisco Bay. Limnol. Oceanogr. 40(1) 67−81. DOI: 10.4319/lo.1995.40.1.0067.

  • Chilová V. (2000). Selected peatland ecosystems of the Protected Landscape Area Veľká Fatra and the contiguous territory of Turiec basin (in Slovak). In V. Stanová (Ed.) Rašeliniská Slovenska (pp. 63−68). Bratislava: Daphne - Inštitút aplikovanej ekológie.

  • Cooper J.N. Anderson J.G. & Campbell C.D. (2002). How resilient are microbial communities to temperature changes during composting? In H. Insam N. Riddech & S. Klammer (Eds.) Microbiology of Composting (pp. 3−16). Berlin: Springer. DOI: 10.1007/978-3-662-08724-4_1.

  • Frostegård Å. & Bååth E. (1996). The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol. Fertil. Soils 22 59-65. DOI: 10.1007/BF00384433.

  • Frostegård Å. Tunlid A. & Bååth E. (2011). Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43 1621-1625. DOI: 10.1016/j.soilbio.2010.11.021.

  • Frouz J. Elhottová D. Baldrián P. Chroňáková A. Lukešová A. Nováková A. & Krištůfek V. (2013). Soil microflora development in post-mining sites. In J. Frouz (Ed.) Soil biota and ecosystem development in post mining sites (pp. 105-131). CRC Press. DOI: 10.1201/b15502-8.

  • Galvánek D. (Ed.) (2007). Unique botanical areas in Slovakia (in Slovak). Bratislava: Daphne - Inštitút aplikovanej ekológie.

  • Gholz H.L. Wedin D.A. Smitherman S.M. Harmon M.E. & Parton W.J. (2000). Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Global Change Biology 6 751-765. DOI: 10.1046/j.1365-2486.2000.00349.x.

  • Hajjar R. Jarvis D.I. & Gemmill-Herren B. (2008). The utility of crop genetic diversity in maintaining ecosystem services. Agric. Ecosyst. Environ. 123 261-270. DOI: 10.1016/j.agee.2007.08.003.

  • Hanajík P. & Fritze H. (2009). Effects of forest management on soil properties at windthrow area in Tatra National Park (TANAP). Acta Environmentalica Universitatis Comenianae 17(2) 36-46.

  • Hedrick D.B. Peacock A.D. & White D.C. (2007). Lipid analyses for viable microbial biomass community composition metabolic status and in situ metabolism. In C.J. Hurst R.L. Crawford J.L. Garland D.A. Lipson A.L. Mills & L.D. Stetzenbach (Eds.) Manual of environmental microbiology (pp. 112−125). Washington: ASM Press.

  • Högberg M.N. Högberg P. & Myrold D.D. (2006). Is microbial community composition in boreal forest soils determined by pH C-to-N ratio the trees or all three? Oecologia 150 590-601. DOI: 10.1007/s00442-006-0562-5.

  • Holmes A.J. Roslev P. McDonald I.R. Iversen N. Henriksen K. & Murrell J.C. (1999). Characterization of methanotrophic bacterial populations in soils showing atmospheric methane uptake. Appl. Environ. Microbiol. 65 3312-3318.

  • Hultman J. Vasara T. Partanen P. Kurola J. Kontro M.H. Paulin L. Auvinenm P. & Romantschuk M. (2010). Determination of fungal succession during municipal solid waste composting using a cloning-based analysis. J. Appl. Microbiol. 108 472-487. DOI: 10.1111/j.1365-2672.2009.04439.x.

  • IMCG-International Mire Conservation Group (2015). Threatened Peatlands of the World Natural reserve Rojkovské rašelinisko Rojkov Fen Nature Reserve SR.[3.02.2015].

  • Jankovská V. (1997). Evolution of peatbogs in Czech and Slovak Republic and cryogenic aspects - facts and hypothesis (in Slovak). In T. Baranec (Ed.) Flóra a vegetácia rašelinísk (pp. 51−54). Nitra: SPU.

  • Karsisto M. Kitunen V. Laiho R. Laine J. Tiainen U. Savitski M. & Penttilä T. (2002). Identification and quantification of organic fractions in litter and peat organic matter during decomposing processes. In L. Pietola & M. Esala (Eds.) Maa josta elämme. II. Maaperätieteiden päivät Helsinki 19.-20.11.2002. Laajennetut abstraktit. Pro Terra 15 36−38.

  • Karsisto M. Savitski M. Kitunen V. Penttilä T. Laine J. & Laiho R. (2003). Quantification of organic fractions in litter and peat organic matter. In J.O. Honkanen & P.S. Koponen (Eds.) Proceedings of Sixth Finnish Conference of Environmental Sciences (pp. 135−137). Joensuu May 8-9 2003. Current Perspectives in Environmental Science and Technology. Finnish Society for Environmental Sciences University of Joensuu.

  • Kates M. (1986). Techniques in lipidology: isolation analysis and identification of lipids. Amsterdam: Elsevier.

  • King J.D. White D.C. & Taylor C.W. (1977). Use of lipid composition and metabolism to examine structure and activity of estuarine detrial microflora. Appl. Environ. Microbiol. 33 1177-1183.

  • Korkama T. Fritze H. Pakkanen A. & Pennanen T. (2006). Interactions between extraradical ectomycorrhizal mycelia microbes associated with the mycelia and growth rate of Norway spruce (Picea abies) clones. New Phytol. 173 798-807. DOI: 10. 1111/j.1469-8137.2006.01957.x.

  • Liski J. Palosuo T. Peltoniemi M. & Sievänen R. (2005). Carbon and decomposition model Yasso for forest soils. Ecol. Model. 189 168-182. DOI: 10.1016/j.ecolmodel.2005.03.005.

  • Lost S. Makeschin F. Abiy M. & Haubrich F. (2008). Biotic soil activities. In E. Beck J. Bendix I. Kottke F. Makeschin & R. Mosandl (Eds.) Gradients in a tropical mountain ecosystem of Ecuador. Ecological Studies 198 217−227. DOI: 10.1007/978-3-540-73526-7.

  • Madan R. Pankhurst C. Hawke B. & Smith S. (2002). Use of fatty acids for identification of AM fungi and estimation of the biomass of AM spores in soil. Soil Biol. Biochem. 34 125-128. DOI: 10.1016/S0038-0717(01)00151-1.

  • Maron P. A. Mougel C. & Ranjard L. (2011). Soil microbial diversity: Methodological strategy spatial overview and functional interest. C. R. Biol. 334 403-411. DOI: 10.1016/j.crvi.2010.12.003.

  • Mohanty S.R. Bodelier P.L.E. & Corad V.F.R. (2006). Differential effects of nitrogenous fertilizers on methaneconsuming microbes in rice field and forest soils. Appl. Environ. Microbiol. 72 1346-1354. DOI: 10.1128/AEM.72.2.1346-1354.2006.

  • Palojärvi A. (2006). Phospholipid Fatty Acid (PLFA) analyses. In J. Bloem D.W. Hopkins & A. Benedetti (Eds.) Microbiological methods for assessing soil quality (pp. 204−211). Wallingford: CABI Publishing.

  • Pinkart H.C. Ringelberg D.B. Piceno Y.M. Macnaughton S.J. & White D.C. (2002). Biochemical approaches to biomass measurements and community structure analysis. In C.J. Hurst (Ed.) Manual of environmental microbiology (pp. 101-113). Washington: ASM Press.

  • Ringelberg D.B. Stair J.O. Almeida J. Norby R.J. O’Neill E.G. & White D.C. (1997). Consequences of rising atmospheric carbon dioxide levels for the belowground microbiota associated with white oak. J. Environ. Qual. 26 495-503. DOI: 10.2134/jeq1997.0047242500. 2600020022x.

  • Rousk J. Brookes P.C. & Bååth E. (2010). The microbial PLFA composition as affected by pH in an arable soil. Soil Biol. Biochem. 42 516-520. DOI: 10.1016/j.soilbio.2009.11.026.

  • Ryan M.G. Melillo J.M. & Ricca A. (1990). A comparison of methods for determining proximate carbon fractions of forest litter. Can. J. For. Res. 20 166-171. DOI: 10.1139/x90-023.

  • Sakamoto K. Iijima R. & Higuchi R. (2004). Use of specific phospholipid fatty acids for identifying and quantifying the external hyphae of the arbusbular mycorrhizal fungus Gigaspora rosea. Soil Biol. Biochem. 36 1827-1834. DOI: 10.1016/j.soilbio.2004.04.037.

  • Shotyk W. Goodsite M.E. Roos-Barraclough F. Frei R. Heinemeier J. Asmund G. Lohse C. & Hansen T.S. (2003). Anthropogenic contributions to atmospheric Hg Pb and As accumulation recorded by peat cores from southern Greenland and Denmark dated using the 14C “bomb pulse curve”. Geoch. Cosm. Acta 67 3991-4011. DOI: 10.1016/S0016-7037(03)00409-5.

  • Stanová V. (2000). Current distribution and threats to peatlands in Slovakia (in Slovak). In V. Stanová (Ed.) Rašeliniská Slovenska (pp. 3-9). Bratislava: DAPHNE - Inštitút aplikovanej ekológie.

  • Tatzber M. Stemmer M. Spiegel H. Katzlberger C. Haberhauer G. & Gerzabek M.H. (2007). An alternative method to measure carbonate in soils by FT-IR spectroscopy. Environ. Chem. Lett. 5 9−12. DOI: 10.1007/s10311-006-0079-5.

  • ter Braak C.J.F. (1994). Basic theory and linear methods. Canonical community ordination. Part I. Ecoscience 1 127-140.

  • ter Braak C.J.F. & Smilauer P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Itaca: Microcomputer power.

  • Trofymow J.A. Moore T.R. Titus B. Prescott C. Morrison I. Siltanen M. Smith S. Fyles J. Wein R. Camire C. Duschene L. Kozak L. Kranabetter M. & Visser S. (2002). Rates of litter decomposition over 6 years in Canadian forests: influence of litter quality and climate. Can. J. For. Res. 32 789-804. DOI: 10.1139/x01-117.

  • Vallejo V.E. Arbeli Z. Terán W. Lorenz N. Dick R.P. & Roldan F. (2012). Effect of land management and Prosopis juliflora (Sw.) DC trees on soil microbial community and enzymatic activities in intensive silvopastoral systems of Colombia. Agric. Ecosyst. Environ. 150 139-148. DOI: 10.1016/j.agee.2012. 01.022.

  • Van Roon M.R. (2012). Wetlands in the Netherlands and New Zealand: Optimising biodiversity and carbon sequestration during urbanisation. J. Environ. Manag. 101 143−150. DOI: 10.1016/j.envman.2011.08.026.

  • Vávřová P. Penttilä T. & Laiho R. (2009). Decomposition of Scots pine fine woody debris in boreal conditions:Implications for estimating carbon pools and fluxes. For. Ecol. Manag. 257 401-412. DOI: 10.1016/j.foreco.2008.09.017.

  • Weiss R. Shurpali N.J. Sallantaus T. Laiho R. Laine J. & Alm J. (2006). Simulation of water table level and peat temperature in boreal peatlands. Ecol. Model. 192 441-456. DOI: 10.1016/j.ecolmodel.2005.07.016.

  • Welc M. Frossard E. Egli S. Bünemann E.K. & Jansa J. (2014). Rhizosphere fungal assemblages and soil enzymatic activities in a 110-years alpine chronosequence. Soil Biol. Biochem. 74 21-30. DOI: 10.1016/j.soilbio.2014.02.014.

  • White D.C. Davis W.M. Nickels J.S. King J.D. & Bobbie R.J. (1979). Determination of the sedimentary microbial biomass by extractible lipid phosphate. Oecologia 40 51-62. DOI: 10.1007/BF00388810.

  • White D.C. Pinkart H.C. & Ringelberg D.B. (1997). Biomass measurements: biochemical approaches. In C.H. Hurst G. Knudsen M. McInerney L.D. Stetzenbach & M. Walter (Eds.) Manual of environment microbiology (pp. 91-101). Washington: American Society for Microbiology Press.

  • Wieder R.K. & Starr S.T. (1998). Quantitative determination of organic fractions in highly organic Sphagnum peat soils. Commun. Soil Sci. Plant Anal. 29 847-857. DOI: 10.1080/00103629809369990.

  • Wilson L. Wilson J. Holden J. Johnstone I. Armstrong A. & Morris M. (2011). Ditch blocking water chemistry and organic carbon flux: Evidence that blanket bog restoration reduces erosion and fluvial carbon loss. Sci. Total Environ. 409 2010-2018. DOI: 10.1016/j.scitotenv.2011.02.036.

  • Zak D.R. Ringelberg D.B. Pregitzer K.S. Randlett D.L. White D.C. & Curtis P.S. (1996). Soil microbial communities beneath Populus grandidentata grown under elevated atmospheric CO2. Ecol. Appl. 6 257-262. DOI: 10.2307/2269568.

  • Zelles L. (1997). Phospholipid fatty acid profiles in selected members of soil microbial communities. Chemosphere 35 275-294. DOI: 10.1016/S0045-6535(97)00155-0.

  • Zelles L. (1999). Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fertil. Soils 29 111-129. DOI: 10.1007/s003740050533.

  • Zogg G.P. Zak D.R. Ringelberg D.B. MacDonald N.W. Pregitzer K.S. & White D.C. (1997). Compositional and functional shifts in microbial communities due to soil warming. Soil Sci. Soc. Am. J. 61 475-481. DOI: 10.2136/sssaj1997.03615995006100020015x.

Journal information
Impact Factor

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 216 57 1
PDF Downloads 110 49 5