Spatial Heterogeneity of Mechanical Impedance of Atypical Chernozem: The Ecological Approach

Open access


In this research paper, the spatial heterogeneity of mechanical impedance of a typical chernozem was investigated. The distance between experimental points in the mechanical impedance space was explained by means of multidimensional scaling. Spearman’s rank correlation coefficients between dissimilarity indices and gradient separation with different data transformation methods revealed that the use of log-transformed data and Horn-Morisita distance was the most appropriate approach to reflect the relationship between the mechanical impedance of soil and ecological factors. A three dimensional variant of multidimensional scaling procedure was selected as the most appropriate decision. Environmental factors were estimated with the use of phytoindicator scales. Broad, medium and fine-scale components of spatial variation of mechanical impedance of soil were extracted using the principal coordinates of neighbour matrices method (PCNM). In the extracted dimensions, statistically significant phytoindicator scales were found to describe variability from 8 to 33%. Dimension 1 correlated with a thermal climate indicator value, a hygromorphs index, an abundance of steppe species and meadow species. Dimension 2 correlated with a continental climate indicator value, carbonate content in the soil and the soil trophicity index (capacity of the soil for plant nutrition). Dimension 3 correlated with acidity, humidity and cryoclimate indicator values. Variation partitioning results revealed that environmental factors and spatial variables explained 47.8% of the total variation of the dimensions. Purely environmental component explained 18.2% of total variation. The spatial component and spatially structured environmental fractions explained 43.6%. The broad-scale spatial component explained 26.4% of dimensional variation, medium-scale – 6.7% and fine-scale – 5.7%. As a result of regression analysis, the broad-scale spatially structured environmental fractions were found to be connected with variability of moisture and thermal climate indicator values. The medium-scale component was revealed to be connected with variability of moisture, thermal climate, total salt regime and aeration of soil indicator value. The fine-scale component was connected with carbonate content in the soil, acidity and humidity indicator values.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bayhan Y. Kayisoglu B. & Gonulol E. (2002). Effect of soil compaction on sunflower growth. Soil Tillage Res. 68 31–38. DOI: 10.1016/S0167-1987(02)00078-8.

  • Belgard A.L. (1950). The forest vegetation in South East of Ukraine (in Russian). Kiev: Kiev University Press.

  • Bets T.J. (2013). Spatial variability of the soil mechanical impedance and its connection with electrical conductivity and productivity of sunflower (in Russian). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 3(2) 30−44.

  • Blanchet F.G. Legendre P. & Borcard D. (2008). Forward selection of explanatory variables. Ecology 89(9) 2623−2632. DOI: 10.1890/07-0986.1.

  • Bobrovskij M.V. (2010). The role of the environment transforming activity of the soil fauna key species to form soil structure (in Russian). In Methodical approaches for ecological assessment of the forest cover in the small river basin (pp. 40−48). Moscow: KMK Scientific Press Ltd.

  • Bondar G.A. & Zhukov A.V. (2011). Plant cover ecological structure formed as a result of self-growing of the sodlithogenic soils on loess-like clays (in Russian). Visnik of the Dnipropetrovsk State Agrarian University 1 54–62.

  • Borcard D. Legendre P. & Drapeau P. (1992). Partialling out the spatial component of ecological variation. Ecology 73 1045–1055. DOI: 10.2307/1940179.

  • Borcard D. & Legendre P. (1994). Environmental control and spatial structure in ecological communities: an example using oribatid mites (Acari Oribatei). Environmental and Ecological Statistics 1 37–61. DOI: 10.1007/BF00714196.

  • Borcard D. & Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Model. 153 51–68.

  • Borcard D. Legendre C. Avois-Jacquet P. & Tuosimoto H. (2004). Dissecting the spatial structure of ecological data at multiple scales. Ecology 85 1826–1832. DOI: 10.1890/03-3111.

  • Borcard D. Gillet F. & Legendre P. (2011). Numerical ecology with R. New York: Springer. DOI: 10.1007/978-1-4419-7976-6.

  • Capowiez Y. Cadoux S. Bouchand P. Roger-Estrade J. Richard G. & Boizard H. (2009). Experimental evidence or the role of earthworms in compacted soil regeneration based on field observations and results from a semi-field experiment. Soil Biol. Biochem. 41(4) 711–717. DOI: 10.1016/j.soilbio.2009.01.006.

  • Clemens J. Schillinger M.P. Golodbach H. & Huwe B. (1999). Spatial variability of N2O emissions and soil parameters of an arable silt loam – a field study. Biol. Fertil. Soils 28(4) 403−406. DOI: 10.1007/s003740050512.

  • Cronbach L.J. & Gleser G. (1953). Assessing similarity between profiles. Psychological Bulletin (50) 456–473. DOI: 10.1037/h0057173.

  • Didukh Ya.P. (2011). The ecological scales for the species of Ukrainian flora and their use in synphytoindication. Kiev: Phytosociocentre.

  • Didukh Ya.P. (2012). The principles of the bioindication (in Ukranian). Kiev: Naukova dumka.

  • Didukh Ya.P. & Plyuta P.G. (1994). Comparative characteristic of the phytoindicator scales (termoregime and edaphic scales as examples) (in Russian). Russian Journal of Ecology 2 34–43.

  • Dray S. Legendre P. & Peres-Neto P. (2006). Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol. Model. 196 483–493. DOI: 10.1016/j.ecolmodel.2006.02.015.

  • Ertsen A.C.D. Alkemade J.R.M. & Wassen M.J. (1998). Calibrating Ellenberg indicator values for moisture acidity nutrient availability and salinity in the Netherlands. Plant Ecol. 135 113−124. DOI: 10.1023/A:1009765529310.

  • Gao M. He P. Zhang X. Liu D. & Wu D. (2014). Relative roles of spatial factors environmental filtering and biotic interactions in fine-scale structuring of a soil mite community. Soil Biol. Biochem. 79 68–77. DOI: 10.1016/j.soilbio.2014.09.003.

  • Godefroid S. & Koedam N. (2003). How important are large vs. small forest remnants for the conservation of the woodland flora in an urban context? Glob. Ecol. Biogeogr. 12 287–298. DOI: 10.1046/j.1466-822X.2003.00035.x.

  • Godefroid S. & Koedam N. (2004). Interspecific variation in soil compaction sensitivity among forest floor species. Biol. Conserv. 119 207–217.

  • Goncalves A.C.A. Folegatti M.V. & Silva A.P. (1999). Estabilidade temporal da especial da umidade do solo em area irrigate por vivo central. Revista Brasileira de Ciencia do Solo 23 (1) 155–164.

  • Grunwald S. McSweeney K. Rooney D.J. & Lowery B. (2001). Soil layer models created with profile cone penetrometer data. Geoderma 1103(1–2) 181–201. DOI: 10.1016/S0016-7061(01)00076-3.

  • Grzesiak S. Grzesiak M.T. Felek W. Hura T. & Stabryla J. (2002). The impact of different soil moisture and soil compaction on the growth of triticale root system. Acta Physiol. Plant. 24 331–342. DOI: 10.1007/s11738-002-0059-8.

  • Hamza M.A. & Anderson W.K. (2005). Soil compaction in cropping systems: A review of the nature causes and possible solutions. Soil Tillage Res. 82(2) 121–145. DOI: 10.1016/j.still.2004.08.009.

  • Horsák M. Hájek M. Tichý L. & Juřičková L. (2007). Plant indicator values as a tool for land mollusc autecology assessment. Acta Oecol. 32(2) 161–171. DOI: 10.1016/j.still.2004.08.009.

  • Jiménez Juan J. Decaëns T. Lavelle P. & Rossi J. (2014). Dissecting the multi-scale spatial relationship of earth-worm assemblages with soil environmental variability. BMC Ecol. 14 26–45. DOI: 10.1186/s12898-014-0026-4.

  • Jongman R.H.G. ter Braak C.J.F. & Tongeren O.F.R. (1987). Data analyses in community and landscape ecology. Wageningen: Pudoc.

  • Karpachevskij L.O. Zubkova T.A. Tashninova L.N. & Rudenko R.N. (2007). Soil cover and forest biogeoceonosis parcelar structure (in Russian). Russian Forest Sciences 6 107−113.

  • Kozlowski T.T. (1999). Soil compaction and growth of woody plants. Scand. J. For. Res. 14 596–619. DOI: 10.1080/02827589908540825.

  • Langmaack M. Schrader S. Rapp-Bernhardt U. & Kotzke K. (2002). Soil structure rehabilitation of arable soil degraded by compaction. Geoderma 105 141–152. DOI: 10.1016/S0016-7061(01)00097-0.

  • Legendre P. Gallagher E.D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129 271–280.

  • Legendre P. Mi X. Ren H. Ma K. Yu M. Sun I.-F. & He F. (2009). Partitioning beta diversity in a subtropical broadleaved forest of China. Ecology 90 663–674. DOI: 10.1890/07-1880.1.

  • Lukina N.V. & Nikonov V.V. (1996). Biogeochemical cycles in North forest in aerotechnogenic contamination (in Russian). Apatity: Izd-vo Kol’skogo NC RAN.

  • Lukina N.V. & Nikonov V.V. (1998). Nutrient regime of the north taiga forests: natural and technogenic aspects (in Russian). Apatity: Izdatel’stvo Kol’skogo NC RAN.

  • Lukina N.V. Gorbacheva T.T. Nikonov V.V. & Lukina M.A. (2002). Spatial variability of the Al-Fe-podzol acidity (in Russian). Eurasian Soil Science 35(2) 163–176.

  • Lukina N.V. Nikonov V.V. & Isaeva L.G. (2006). Acidity and nutrient regime of the spruce forest soils (in Russian). In Indigenous spruce forests: biodiversity structure function (pp. 215−253). Nauka.

  • Matveev N.M. (2003). The system of the A.L. Belgard ecomorphes optimization for the sake of the ecotope and biotope phytoindication (in Russian). Visnyk Dnipropetrovsk University. Biology ecology 11(2) 105–113.

  • Magurran A. E. (2004). Measuring biological diversity. Oxford: Blackwell Publishing.

  • Medina C. Camacho-Tamayo J.H. & Cortes C.A. (2012). Soil penetration resistance analysis by multivariate and geostatistical methods. Engenharia Agrícola 32(1) 91–101. DOI: 10.1590/S0100-69162012000100010.

  • Medvedev V.V. (2009). Soil penetration resistance and penetrographs in studies of tillage technologies. Eurasian Soil Science 42(3) 299–309. DOI: 10.1134/S1064229309030077.

  • Medvedev V.V. & Mel’nik A.I. (2010). Heterogeneity of soil agrochemical properties in the space and the time (in Russian). Agricultural Chemistry 1 20–26.

  • Minchin P.R. (1987). An evaluation of the relative robustness of techniques for ecological ordination. Vegetatio 67 1167–1179. DOI: 10.1007/BF00038690.

  • Montagu K.D. Conroy J.P. & Atwell B.J. (2001). The position of localized soil compaction determines root and subsequent shoot growth responses. J. Exp. Bot. 52 2127–2133. DOI: 10.1093/jexbot/52.364.2127.

  • Moiseev K.G. (2013). Calculating the density of loamy sandy soddy-podzolic soils from penetration resistance diagrams. Eurasian Soil Science 46(10) 1026–1031. DOI: 10.1134/S1064229313100050.

  • Novakovsky A.B. (2008). Ordination methods in the modern geobotanics (in Russian). Bulletin of the Biology Institute. Komy SC UrD RAS 132(10) 2–8.

  • Oksanen J. Kindt R. Legendre P. & O’Hara R.B. (2007) Vegan: community ecology package version 1.8–5.

  • Oksanen J. Blanchet F.G. Kindt R. Legendre P. et al. (2011). Community ecology package. R package version 2.0-2.

  • Orlova M.A. Lukina N.V. & Nikonov V.V. (2003). Spruce influence on the spatial variability north taiga forests soils acidity (in Russian). Russian Forest Sciences 6 3–11.

  • Paračková A. & Zaujec A. (2001). Evaluation of human impacts on soils on the Borská nížina lowland. Ekológia (Bratislava) 20(Suppl.3) 299–304.

  • Peres-Neto P.R. Legendre P. Dray S. & Borcard D. (2006). Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87 2614−2625. DOI: 10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2.

  • Prentice I.C. (1977). Non-metric ordination methods in ecology. J. Ecol. 65 85–94. DOI: 10.2307/2259064.

  • Ramenskij L.G. Cacenkin I.A. Chizhikov O.N. & Antipov N.A. (1956). Grasslands ecological assessment on the basis of the plant cover (in Russian). Moscow: Sel’hozgiz.

  • Ramires-Lopez L. Reina-Sanchez A. & Camacho-Tamayo J.H. (2008). Variabilidad espacial de atributos fisicos de un Typic Haplustox de los Llanos Orientales de Colombia. Engenharia Agrícola 28(1) 55–63. DOI: 10.1590/S0100-69162008000100006.

  • Rosolem C.A. Foloni J.S.S. & Tiritan C.S. (2002). Root growth and nutrient accumulation in cover crops as affected by soil compaction. Soil Tillage Res. 65 109–115. DOI: 10.1016/S0167-1987(01)00286-0.

  • Samsonova V.P. (2008). Spatial variability of the soil properties: sod-podzol soils as example (in Russian). Moscow: Izdatel’stvo LKI.

  • Schaffers A.P. & Sykora K.V. (2000). Reliability o f Ellenberg indicator values for moisture nitrogen and soil reaction: a comparison with field measurements. J. Veg. Sci. 11 225–244. DOI: 10.2307/3236802.

  • Schenková V. Horsák M. Plesková Z. & Pawlikowski P. (2012). Habitat preferences and conservation of Vertigo geyeri (Gastropoda: Pulmonata) in Slovakia and Poland. J. Molluscan Stud. 78(1) 105–111. DOI: 10.1093/mollus/eyr046.

  • Selles F. Campbell C.A. McConkey B.G. Brandt S.A. & Messer D. (1999). Relationships between biological and chemical measures of N supplying power and total N at field scale. Can.. J. Soil Sci. 79 353–366. DOI: 10.4141/S98-035.

  • Serafim M.E. Vitorino A.C.T. Peixoto P.P.P. Souza C.M.A. & Carvalho D.F. (2008). Intervalo hidrico otimo em um latossolo vermelho distroferrico sob diferentes sistemas de producao. Engenharia Agrícola 28(4) 654–665. DOI: 10.1590/S0100-69162008000400005.

  • Shein E.V. (2001). Spatial heterogeneity of the properties on the different hierarchical levels is a basis of the soils structure and functions (in Russian). In Scales effects following soils invesigation. Moscow: MGU.

  • Shitikov V.K. Rozenberg G.S. & Zinchenko T.D. (2003). Quantitative hydro ecology: system identification methods (in Russian). Tol’jatti: IJeVB RAN.

  • Soracco C.G. Lozano L.A. Sarli G.O. Gelati P.R. & Filgueira R.R. (2010). Anisotropy of saturated hydraulic conductivity in a soil under conservation and no-till treatments. Soil Tillage Res. 109 18–22. DOI: 10.1016/j.still.2010.03.013.

  • Startsev A.D. & McNabb D.H. (2000). Effects of skidding on forest soil infiltration in west-central Alberta. Can. J. Soil Sci. 80 617–624. DOI: 10.4141/S99-092.

  • Tarasov V.V. (2012). Flora of the Dnipropetrovsk and Zaporizhia regions (in Ukrainian). Dnipropetrovs’k: Lira.

  • Tolstova Ju.N. (2006). Multidimensional scales basis (in Russian). Moscow: KDU.

  • Tryfanova M. Zadorojhna G. & Zhukova J. (2014). Gray heron colony impact on soil cellulolytic activity (in Ukrainian). Visnyk of L’viv University. Seria Biologia 65 245–254.

  • Wright S. A. (1988). Axis and Circumference. Cambridge: Harvard University Press.

  • Zadorozhnaya G.A. (2012). The spatial organization of soddy lithogenic soils on the grey-grin clays (in Ukrainian). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 2 (1) 48–57. DOI: 10.15421/20133_03.

  • Zagulnova L.B. Byhovec S.S. Barinov O.G. & Barinova M.A. (1998). Habitat scores verifications according to some environmental parameters (in Russian). Russian Forest Sciences 5 48–58.

  • Zagulnova L.B. Lukina N.V. & Tihonova E.V. (2010). Spatial structure of the biogeocoenotic forest cover (in Russian). In Methodical approaches for ecological assessment of the forest cover in the small river basin (pp. 10−19). Moscow: KMK Scientific Press Ltd.

  • Zagulnova L.B. & Tihonova E.V. (2010) Phytoindication of the ecological regimes in small basin (in Russian). Methodical approaches for ecological assessment of the forest cover in the small river basin (pp. 156−158). Moscow: KMK Scientific Press Ltd.

  • Zhukov A.V. (2015). Influence of usual and dual wheels on soil penetration resistance: the GIS-appoach (in Russian). Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University 5(3) 73–100. DOI: 10.15421/2015029.

  • Zhukov A.V. & Zadorozhnaya G.A. (2015). Ecomorphic organisation of the soil body: geostatistical approach (in Ukrainian). Studia Biologica 9(3–4) 119–128.

Journal information
Impact Factor

CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 63 2
PDF Downloads 128 50 2