The structure of the radiation balance on a sandy surface: case the Błędów desert, Silesian Upland

Open access

Abstract

Comprehensive environmental studies taking under consideration the structure of the radiation balance during the vegetation growing seasons of 2001 and 2002 were carried out on the open sandy surface of the area called the Błędów ‘desert’ located on Silesian Upland. The research in each site covered the composition of plant species, their age and height, the condition of the substratum, the composition and structure of the soil and the meteorological conditions with elements of the radiation balance. The article presents some part of the research on meteorological elements and their impact on ecosystem. Special attention was devoted to radiation conditions on the open sandy surface in the context of the formation of BSC (biological soil crust). Having presumed that the values obtained on the grassy surface constituted 100%, the values of radiation reflection measured on the open sandy surface were 185% higher and the values of net longwave radiation were 105% higher in day time and 137% in night time. Values of net radiation of about 63% lower were observed on the sandy surface during a typical sunny summer day. It was found that a strong irradiation of the sandy surface (26 MJ·m–2d–1) creates extremely difficult conditions for the initiation of the process of ecosystem formation (including BSC or plant succession). The elements of the radiation balance, net radiation, albedo and temperature of the open sandy surface were represented quantitatively. The test surfaces were classified based on the value of the albedo: group I with low albedo values, up to 0.15 (spore-bearing plants on a dark surface), including BSC; group II with mean values of the albedo from 0.16 to 0.24 (spore-bearing plants and seed on a dark grey surface); and group III with high albedo values, above 0.25 (plants growing on bare or loose sands).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bednarek R. Dziadowiec H. & Pokojska U. (2002). Pedological aspect of variability. Ecol. Quest. 1 35–41.

  • Belnap J. Büdel B. & Lange O.L. (2003). Biological soil crust: Characteristics and distribution. In J. Belnap & O.L. Lange (Eds.) Biological soil crusts: Structure function and management. Ecol. Stud. 150 3–30. DOI: 10.1007/978-3-642-56475-8.

  • Cabała J. & Rahmonov O. (2004). Cyanophyta and algae as an important component of biological crust from Pustynia Błędowska Desert (Poland). Pol. Bot. J. 49(1) 93–100.

  • Caputa Z. (2007). Diversity of albedo and longwave exchange and radiative efficiency coefficients on the Błędów Desert area (in Polish). Pamiętnik Puławski 144 35–44.

  • Caputa Z. & Leśniok M. (2011). Incoming shortwave solar radiation in Sosnowiec (2000–2009) (in Polish). Prace i Studia Geograficzne 47 393–400.

  • Caputa Z. & Wojkowski J. (2013). Influence of solar radiation on air and soil temperature in the Cracow Upland (in Polish). Prądnik Prace i Materiały Muzeum im. prof. Władysława Szafera 23 65–74.

  • Caputa Z. & Wojkowski J. (2015). Structure of radiation balance in diverse types of relief. Annals of Warsaw University of Life Science Land Reclamation 47(4) 343−354. DOI: 10.1515/sggw-2015-0036.

  • Czylok A. & Rahmonov O. (2004). The encroachment of Scots pine Pinus sylvestris L. on the area of former sand exploitation in the eastern Silesian Upland. In A. Brzeg & M. Wojterska (Eds.) Coniferous forest vegetation – differentiation dynamics and transformations (pp. 251−256). Poznań: Wydawnictwo Naukowe UAM.

  • Czylok A. Rahmonov O. & Szymczyk A. (2008). Biological diversity in the area of quarries after sand exploitation in the eastern part of Silesian Upland. Teka Komisji Ochrany Ksztaltowania Środowiska Przyrodniczego OL PAN 5A 15–22.

  • Fromm A. Jakob S. & Tischew S. (2002). Sandy grassland in former mining areas. Nat. Schutz Landschplan. 34 45–51.

  • Gómez-Heras M. Smith B.J. & Fort R. (2006). Surface temperature differences between minerals in crystalline rocks: Implications for granular disaggregation of granites through thermal fatigue. Geomorphology 78 236–249. DOI: 10.1515/sggw-2015-0036.

  • Hollósy F. (2002). Effects of ultraviolet radiation on plant cells. Micron 33 179–197. DOI: 10.1016/S0968-4328(01)00011-7.

  • Hui R. Li X. Chen C. Zhao X. Jia R. Liu L. & Wei Y. (2013). Responses of photosynthetic properties and chloroplast ultrastructure of Bryum argenteum from a desert biological soil crust to elevated ultraviolet-B radiation. Physiol. Plant. 147 489–501. DOI: 10.1111/j.1399-3054.2012.01679.x.

  • Kejna M. Uscka-Kowalkowska J. Araźny A. Kunz M. Maszewski R. & Przybylak R. (2014). Spatial differentiation of global solar radiation in Toruń and its suburban area (central Poland) in 2012. Bulletin of Geography Physical Geography Series 7(1) 27–56. DOI: 10.2478/bgeo-2014-0002.

  • Kidron G.J. (2010). The effect of substrate properties size position sheltering and shading on dew: An experimental approach in the Negev Desert. Atmospheric Research 98 378–386. DOI: 10.1016/j.atmosres.2010.07.015.

  • Kidron G.J Vonshak A. Dor I. Barinova I. & Abeliovich A. (2010). Properties and spatial distribution of microbiotic crusts in the Negev Desert Israel. Catena 82 92–101. DOI: 10.1016/j.catena.2010.05.006.

  • Kidron G.J. Starinsky A. & Yaalon D.H. (2014). Cyanobacteria are confined to dewless habitats within a dew desert: Implications for past and future climate change for lithic microorganisms. J. Hydrol. 519(Part D) 3606–3614. DOI: 10.1016/j.jhydrol.2014.11.010.

  • Kruczała K. (2000). Atlas of climate the voivodship of the Śląsk (in Polish). Katowice: IMGW.

  • Li X.R. Tian F. Jia R.L. Zhang Z.S. & Liu L.C. (2010). Do biological soil crusts determine vegetation changes in sandy deserts? Implications for managing artificial vegetation. Hydrological Processes 24 3621–3630. DOI: 10.1002/hyp.7791.

  • Li Y. Gao Y. Zhang L. & Su Z. (2014). Responses to UV-B exposure by saplings of the relict species Davidia Involucrata Bill are modified by soil nitrogen availability. Pol. J. Ecol. 62 101–110. DOI: 10.3161/104.062.0110.

  • Machowski R. (2010). Transformations of geosystems of water reservoirs originated in subsidence depressions (a case study of the Katowice Upland) (in Polish). Katowice: Wyd. Uniwer. Śląskiego.

  • Michalska B. (2011). Tendencies of air temperature changes in Poland (in Polish). Prace i Studia Geograficzne 47 67–75.

  • Nowak T. Urbisz A Kapusta P. & Tokarska-Guzik B. (2011). Distribution patterns and habitat preferences of mountain vascular plant species in the Silesian Uplands (southern Poland). Pol. J. Ecol. 59(2) 219–234.

  • Oke T.R. (1999). Urban environments. In W.G. Bailey T.R. Oke & W.R. Rouse (Eds.) The surface climates of Canada (pp. 303–327). Montréal: McGill-Queen’s University Press.

  • Paszyński J. & Miara K. (1994). The atlas of the Republic of Poland (in Polish). Warszawa: Główny Geodeta Kraju.

  • Paszyński J. Miara K. & Skoczek J. (1999). The energy exchange at the earth-atmosphere boundary as a base for topoclimatological mapping (in Polish). Dokumentacja Geograficzna 14 1−169. http://rcin.org.pl

  • Pełka-Gościniak J. Rahmonov O. Szczypek T. & Wach J. (2007). The influence of aeolian factor on circulation of sandy material in the sandpits of Silesian Upland (southern Poland). Annales Geographicae 40 (1) 57–69.

  • Rahmonov O. (2000). The evolution and regeneration of eco-systems in Błędów “Desert” (Southern Poland) – undergone of medieval ecologiacal disaster. Geographia Studia et Dissertationes 25 61–72.

  • Rahmonov O. (2007). Relations between vegetation and soil in initial phase of succession in sandy areas (in Polish). Katowice: University of Silesia.

  • Rahmonov O. & Kin N.O. (2007). Role of allochthonous substance in initial stage of succession. Acta Geographica Silesiana 1 53–60.

  • Rahmonov O. & Piątek J. (2007). Sand colonization and initiation of soil development by cyanobacteria and algae. Ekológia (Bratislava) 26(1) 52–63.

  • Rahmonov O. & Szymczyk A. (2010). Relations between vegetation and soil in initial succession phases in post-sand excavations. Ekológia (Bratislava) 29(4) 412–429.

  • Rahmonov O. Caputa Z. & Kłys G. (2002). The biogeocenosis formation on the area with different topography. In D. Kereković (Ed.) GIS Odyseey (pp. 216–224). Zagreb: Hrvatski Informaticki Zbor.

  • Rahmonov O. Malik I. & Orczewska A. (2004). The influence of Salix a cutifolia Willd. on soil formation in sandy areas. Polish Journal of Soil Science 37(1) 77–84.

  • Szczypek T. & Wach J. (1999). Human impact and development of a modern scarp dune. In W. Schirmer (Ed.) Dunes and fossil soils (pp. 177–186). LIT Verlag.

  • Tyc A. Czylok A. & Rahmonov O. (1999). Human impacts and spontaneous regeneration of a karst-aeolian ecosystem in anthropogenic desert near Olkusz (Silesian Upland Poland). Acta Geographica 26 70–77.

  • Wolf L. Rizzini L. Stracke R. Ulm R. & Rensing S.A. (2010). The molecular and physiological responses of Physcomitrella patens to ultraviolet-b radiation. Plant Physiol.1531123–1134. DOI:10.1104/pp.110.154658.

  • Xie Z. Wang Y. Liu Y. & Liu Y. (2009). Ultraviolet-B exposure induces photooxidative damage and subsequent repair strategies in a desert cyanobacterium Microcoleus vaginatus Gom. Eur. J. Soil Biol. 45 377–382. DOI: 10.1016/j.ejsobi.2009.04.003.

Search
Journal information
Impact Factor


CiteScore 2018: 0.77

SCImago Journal Rank (SJR) 2018: 0.283
Source Normalized Impact per Paper (SNIP) 2018: 0.534

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 198 87 4
PDF Downloads 89 55 6