Evaluation of the risk of diffuse pollution of groundwater by nitrogen substances from agricultural land use as background for allocation of effective measures

Radoslav Bujnovský 1 , Peter Malík 2  and Jaromír Švasta 2
  • 1 Water Research Institute, Nábr. arm. gen. L. Svobodu 5, 812 49 Bratislava, Slovak Republic
  • 2 State Geological Institute of Dionýz Štúr, Mlynská dolina 1, 817 04 Bratislava 11, Slovak Republic


The risk of diffuse pollution of groundwater by nitrogen substances from agricultural land is perceived as a result of the interaction of groundwater vulnerability (determined by the characteristics of the environment overlying groundwater in relation to water transport or soil solution) and loading of overlying environment by nitrogen. Index of groundwater vulnerability was assessed on the basis of four parameters, namely, the amount of effective rainfall in the period from October to March, the capacity of soil to accumulate water, the average depth of the groundwater table and the permeability of the rock environment. Assessment of the index of loading of overlying environment by nitrogen was based on two parameters, namely, nitrogen balance and crop cover on agricultural land in the winter half on districts level in 2012, which corresponds with current state of the load. The resulting risk of groundwater pollution by nitrogen was expressed by the formula counting with the transformed values of groundwater vulnerability index and the index of loading of overlying environment by nitrogen. From practical point of view, the above mentioned indexes, as well as the subsequent risk of diffuse groundwater pollution, were spatially expressed via three associated categories. Based on the evaluation of relevant parameters, 5.18% of agricultural land falls into the category of very high and high risk, 42.20% in the medium risk category and 52.62% in the category of low and very low risk of diffuse pollution of groundwater by nitrogen from agricultural land.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • ADAS (2007). Diffuse nitrate pollution from agriculture - strategies for reducing nitrate leaching. ADAS report to DEFRA - supporting paper D3 for the consultation on implementation of the Nitrates Directive in England. Pendeford: ADAS .

  • ALTERRA (2007). Assessment of the designation of Nitrate vulnerable zones in Poland. Report within Contract for Outsourcing of technical and administrative assistance: 2006/441164/MAR/B1. Wageningen: ALTERRA .

  • ALTERRA (2008). Assessment of the designation of Nitrate vulnerable zones in Slovakia. Report within Contract for Outsourcing of technical and administrative assistance: 2007/474674/MAR/B1. Wageningen: ALTERRA .

  • Berkhoff, K. (2008). Spatially explicit groundwater vulnerability assessment to support the implementation of the Water Framework Directive - a practical approach with stakeholders. Hydrology and Earth Systems Science, 12, 111−122. doi: 10.5194/hess-12-111-2008.

  • Buczko, U. & Kuchenbuch R.O. (2010). Environmental indicators to assess the risk of diffuse nitrogen loses from agriculture. Environ. Manag., 45, 1201−1222. DOI : 10.1007/s00267-010-9448-8.

  • Bujnovský, R., Balkovič, J., Barančíková, G., Makovníková, J. & Vilček J. (2009). Evaluation and pricing of ecological functions of Slovak agricultural soils (in Slovak). Bratislava: VÚPOP .

  • Bujnovský, R. (2014). Nitrogen balance and measure in relation to the reduction of diffuse groundwater pollution with nitrogen from agriculture (in Slovak). Vodohospodarsky Spravodajca, 57(11−12), 4−7.

  • Burkart, M.R., Kolpin, D.W. & James D.E. (1999). Assessing groundwater vulnerability to agrochemical contamination in the Midwest US. Water Sci. Technol., 39(3), 103−112.

  • Dabney, S.M., Delgado, J.A. & Reeves D.W. (2001). Using winter cover crops to improve soil and water quality. Commun. Soil Sci. Plant Anal., 32(7−8), 1221−1250. DOI : 10.1081/CSS-100104110.

  • Daly, D., Dassargues, A., Drew, D., Dunne, S., Goldschneider, N., Neale, S., Popescu, CH. & Zwahlen F. (2002). Main concepts of the “European Approach“ for karst groundwater vulnerability assessment and mapping. Hydrogeology Journal, 10(2), 340−345. DOI : 10.1007/s10040-001-0185-1.

  • De Jong, R., Yang, J.Y., Drury, C.F., Huffman, E.C., Kirkwood, V. & Yang X.M. (2007). The indicator of risk of water contamination by nitrate-nitrogen. Can. J. Soil Sci., 87 (Special Issue), 179−188. DOI : 10.4141/S06-060.

  • Dworak, T., Berglund, M., Thaler, T., Fabik, E., Ribeiro, M.M., Laaser, C., Matauschek. M., Amand, B. & Grandmougin B. (2010). Assessment of agriculture measures included in the draft River Basin Management Plans. Summary Report. Berlin/Vienna: Ecologic Institute.

  • EEA (2012). European waters - assessment of status and pressures. EEA Report No. 8/2012. Copenhagen: EEA.

  • Gogu, R.C. & Dassargues A. (2000). Current trends and future challenges in groundwater assessment index using overlay and index methods. Environ. Geol., 39(6), 549−559. DOI : 10.1007/s002540050466.

  • Haberle, J., Kusá, H., Svoboda, P. & Klír K. (2009). The changes of soil mineral nitrogen observed on farms between autumn and spring and modelled with simple leaching equation. Soil and Water Research, 4(4), 159−167.

  • Halberg, N., Verschuur, G. & Goodlass G. (2005). Farm level environmental indicators: are they useful? An overview of green accounting systems for European farms. Agric. Ecosyst. Environ., 105, 195−212. doi: 10.1016/j. agee.2004.04.003.

  • Holubec, M., Slivková, K., Kútnik, P. & Kollár M. (2005). Assessment of pollution sources to protect water resources and the determination the protection zones (in Slovak). In Voda Zlin 2005 (pp. 121−125). Sborník příspěvků IX. mezinárodní vodohospodářské konference. Zlín: Zlínská vodárenská, a.s.

  • Kerr-Upal, M., Van Seters, T., Whitehead, G., Price, J. & Stone M. (1999). Assessing the risk of groundwater nitrate contamination in the region of Waterloo, Ontario. Canadian Water Resources Journal, 24(3), 225−233. DOI : 10.4296/cwrj2403225.

  • Lacroix, A., Beaudoin, N. & Makowski D. (2005). Agricultural water nonpoint pollution control under uncertainty and climate variability. Ecological Economics, 53(1), 115−127. doi: 10.1016/j.ecolecon.2004.11.001.

  • Malík, P. & Švasta J. (2004). „European approach“ in the groundwater vulnerability assessment (in Slovak). Podzemna Voda, 10(1), 50−59.

  • Malík, P., Bačová, N., Hronček, S., Ivanič, B., Káčer, Š., Kočický, D., Maglay, J., Marsina, K., Ondrášik, M., Šefčík, P., Černák, R., Švasta, J. & Lexa J. (2007). Zostavovanie geologickych map v mierke 1 : 50 000 pre potreby integrovaneho manažmentu krajiny. Arch. No. 88158. Bratislava: ŠGÚDŠ.

  • Malík, P., Švasta, J., Bahnová, N., Kočický, D., Ivanič, B., Maretta, M., Špilárová, I. & Zvara I. (2012). Komplexná geologická informačná báza pre potreby ochrany prírody a manažmentu krajiny (GIB-GES). Geologicke Prace, 119, 7−19.

  • Meals, D.W., Dressing, S.A. & Davenport T.E. (2010). Lag time in water quality response to best management practices: A review. J. Environ. Qual., 39, 85−96. doi: 10.2134/jeq2009.0108.

  • National Research Council (1993). Ground water vulnerability assessment. Contamination potential under conditions of uncertainty. Washington, D.C.: National Academy Press.

  • OECD (2007). OECD and EUROSTAT gross nitrogen balances handbook. Paris: OECD.

  • OECD (2012). Water quality and agriculture. Meeting the policy challenge. Paris: OECD publishing.

  • Ondrejková, I., Májovská, A., Gergeľová, Z., Mrafková, L., Paľušová, Z., Ľuptáková, A., Bujnovský, R., Supeková, M., Grófová, R. & Kuníková E. (2012). Report on the implementation Council Directive 91/676/EEC concerning the protection against pollution caused by nitrates from agricultural sources in Slovakia (in Slovak). Bratislava: MŽP SR.

  • Schafffer, M.J. & Delgado J.A. (2002). Essentials of a national nitrate leaching index assessment tool. Journal of Soil and Water Conservation, 7(6), 327−335.

  • Schilling, K.E. & Wolter C.F. (2007). A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change. Environ. Geol., 53, 433−443. DOI : 10.1007/s00254-007-0659-0.

  • Schröder, J.J. & Neeteson J.J. (2008). Nutrient management regulations in the Netherlands. Geoderma, 144(3−4), 418−425. doi: 10.1016/j.geoderma.2007.12.012.

  • Sieling, K. & Kage H. (2006). N balance as an indicator of N leaching in an oilseed rape - winter wheat - winter barley rotation. Agric. Ecosyst. Environ., 115, 261−269. doi: 10.1016/j.agee.2006.01.011.

  • Solheim, A.L., Austnes, K., Kristensen, P., Peterlin, M., Kodeš, V., Collins, R., Semerádová, S., Künitzer, A., Filippi, R., Prchalová, H., Spiteri, C. & Prins Th. (2012). Ecological and chemical status and pressures in European waters. Thematic assessment for EEA Water 2012 Report. Prague: European Topic Centre on Inland, Coastal and Marine Waters.

  • Švasta, J. & Malík P. (2006). Priestorové rozloženie priemerných efektívnych zrážok na území Slovenska. Podzemna Voda, 12(1), 65−77.

  • Torstensson, G., Aronnoson, H. & Bergström L. (2006). Nutrient use efficiencies and leaching of organic and conventional cropping systems in Sweden. Agron. J., 98(3), 603−615. doi: 10.2134/agronj2005.0224.

  • Vernohr, M. (2012). Background paper on recent methods, input data and modelled nutrient emissions and potential of measures to reduce these in the Danube catchment. Paper presented on the ICPDR workshop November 5-6th 2012, Bucharest.

  • Voigt, H-J., Heinkele, Th., Jahnke, Ch. & Wolter R. (2004). Characterization of groundwater vulnerability to fulfill requirements of the water framework directive of the European Union. Geofisica Internacional, 43(4), 567−574.

  • Webb, J., Sorensen, P., Velthof, G., Amon, B., Pinto, M., Rodhe, L., Salomon, E., Hutchings, N., Burczyk, P. & Reid J. (2010). Study on variation of manure N efficiency throughout Europe. A report for European Commission - Directorate General Environment. Didcot: AEA Technology plc.

  • Windolf, J., Blicher-Mazhiesen, G., Carstensen, J. & Kronvang B. (2012). Changes in nitrogen loads to estuaries following implementation of governmental action plans in Denmark: A paired catchment and estuary approach for analysing regional responses. Environmental Science and Policy, 24, 24−33. doi: 10.1016/j.envsci.2012.08.009.

  • Wrightson, I., Cooper, S., Crookes, M., Grundy, C.L., King, N., Larner, J., Lewis, P., Lohmann, D.H., Maxwell, C., Perry, D., Sanderson, D.M. & Lipworth S. (2008). Environment, Health and Safety Committee Note on: Environmental risk assessment. London: RSC.


Journal + Issues