Environmental Consequences of Wildlife Tourism: The Use of Formalised Qualitative Models

Štěpán Veselý 1  and Mirko Dohnal 1
  • 1 Department of Economics, Faculty of Business and Management, Brno University of Technology, Kolejní 4, 612 00 Brno, Czech Republic


The paper presents a simple qualitative model of environmental consequences of wildlife tourism. Qualitative models use just three values: Positive/Increasing, Zero/Constant and Negative/Decreasing. Such quantifiers of trends are the least information intensive. Qualitative models can be useful, since models of wildlife tourism include such variables as, for example, Biodiversity (BIO), Animals’ habituation to tourists (HAB) or Plant composition change (PLA) that are sometimes difficult or costly to quantify. Hence, a significant fraction of available information about wildlife tourism and its consequences is not of numerical nature, for example, if HAB is increasing then BIO is decreasing. Such equationless relations are studied in this paper. The model has 10 variables and 20 equationless pairwise interrelations among them. The model is solved and 15 solutions, that is, scenarios are obtained. All qualitative states, including the first and second qualitative derivatives with respect to time, of all variables are specified for each scenario.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ballantyne, R., Packer, J. & Hughes K. (2009). Tourists’ support for conservation messages and sustainable management practices in wildlife tourism experiences. Tourism Management, 30, 658−664. doi :10.1016/j.tourman. 2008.11.003.

  • Barančok, P. & Barančokova M. (2008). Evaluation of the tourist path carrying capacity in the Belianske Tatry Mts. Ekológia (Bratislava), 27, 401−420.

  • Beale, C.M. & Monaghan P. (2005). Modeling the effects of limiting the number of visitors on failure rates of seabird nests. Conserv. Biol., 19, 2015−2019. DOI: 10.1111/j.1523-1739.2005.00256.x.

  • Benaroch, M. & Dhar V. (1995). Controlling the complexity of investment decisions using qualitative reasoning techniques. Decision Support Systems, 15, 115−131. doi : 10.1016/0167-9236(94)00031-M.

  • Bohanec, M., Rajkovič, V., Semolić, B. & Pogačnik A. (1995). Knowledge-based portfolio analysis for project evaluation.Information & Management, 28, 293−302. doi : 10.1016/0378-7206(94)00048-N.

  • Bourseau, P., Bousson, K., Dague, P., Dormoy, J.-L. et al. (1995). Qualitative reasoning: A survey of techniques and applications. AI Communications, 8, 119−192. DOI: 10.3233/AIC-1995-83-401.

  • Boutin, S. (1990). Food supplementation experiments with terrestrial vertebrates: Patterns, problems, and the future.Can. J. Zool., 68, 203−220. DOI: 10.1139/z90-031.

  • Catlin, J., Jones, R. & Jones T.S. (2011). Revisiting Duffus and Dearden’s wildlife tourism framework. Biol. Conserv., 144, 1537−1544. DOI: 10.1016/j.biocon.2011.01.021.

  • De Jong, H. (2004). Qualitative simulation and related approaches for the analysis of dynamic systems. Knowledge Engineering Review, 19, 93−132. DOI: 10.1017/S0269888904000177.

  • Dohnal, M. (1991). A methodology for common-sense model development. Computers in Industry, 16, 141−158.

  • Dohnal, M. (1992). Qualitative partial differential equations and their realistic applications. Computers in Industry, 20, 209−217.

  • Dubois, D. & Prade H. (1991). Fuzzy sets in approximate reasoning, part 1: Inference with possibility distributions.Fuzzy Sets and Systems, 40, 143−202.

  • Figueras, M.T.B., Farres, M.C.P. & Perez G.R. (2011). The carrying capacity of cycling paths as a management instrument.The case of Ebro delta (Spain). Ekológia (Bratislava), 30, 438−452. DOI: 10.4149/ekol_2011_04_397.

  • Giannecchini, J. (1993). Ecotourism: New partners, new relationships. Conserv. Biol., 7, 429−432. DOI: 10.1046/j.1523-1739.1993.07020429.x.

  • Higham, J.E.S. & Shelton E.J. (2011). Tourism and wildlife habituation: Reduced population fitness or cessation of impact? Tourism Management, 32, 1290−1298. doi : 10.1016/j.tourman.2010.12.006.

  • Hinkkanen, A., Lang, K.R. & Whinston A.B. (2003). A set-theoretical foundation of qualitative reasoning and its application to the modeling of economics and business management problems. Information Systems Frontiers, 5, 379−399. DOI: 10.1023/B:ISFI.0000005652.72048.4d.

  • Hurme, M., Jarvelainen, M., Parsons, S. & Dohnal M. (1993). A qualitative commonsense method for optimization of complex engineering systems. Engineering Optimization, 20, 323−339. DOI: 10.1080/03052159308941288.

  • Keesman, K.J. (2011). System identification. London: Springer. DOI: 10.1007/978-0-85729-522-4.

  • Knight, J. (2009). Making wildlife viewable: Habituation and attraction. Society & Animals, 17, 167−184. DOI: 10.1163/156853009X418091.

  • Kuipers, B. (1989). Qualitative reasoning: Modeling and simulation with incomplete knowledge. Automatica, 25, 571−585.

  • Laist, D.W., Knowlton, A.R., Mead, J.G., Collet, A.S. & Podesta M. (2001). Collisions between ships and whales. Mar.

  • Mamm. Sci., 17, 35−75. DOI: 10.1111/j.1748-7692.2001.tb00980.x.

  • Lott, D.F. & McCoy M. (1995). Asian rhinos Rhinoceros unicornis on the run: Impact of tourist visits on one population.Biol. Conserv., 73, 23−26. doi : 10.1016/0006-3207(95)90053-5.

  • Lusseau, D. (2003). Effects of tour boats on the behavior of bottlenose dolphins: Using Markov chains to model anthropogenic impacts. Conserv. Biol., 17, 1785−1793. DOI: 10.1111/j.1523-1739.2003.00054.x.

  • Noble, R.A.A., Bredeweg, B., Linnebank, F., Salles, P. & Cowx I.G. (2009). A qualitative model of limiting factors for a salmon cycle in the context of river rehabilitation. Ecological Informatics, 4, 299−319. DOI: 10.1016/j. ecoinf.2009.09.006.

  • Oblak, L. & Zadnik Stirn L. (2000). The possibility of solving economic and environmental protection problems in wood industry companies by the application of the method of fuzzy goal programming. Ekológia (Bratislava), 19, 409−419.

  • Orams, M.B. (1996). A conceptual model of tourist-wildlife interaction: The case for education as a management strategy. Aust. Geogr., 27, 39−51.DOI: 10.1080/00049189608703156.

  • Orams, M.B. & Hill G.J.E. (1998). Controlling the ecotourist in a wild dolphin feeding program: Is education the answer? Journal of Environmental Education, 29(3), 33−38. DOI: 10.1080/00958969809599116.

  • Orams, M.B. (2002). Feeding wildlife as a tourism attraction: a review of issues and impacts. Tourism Management, 23, 281−293. doi : 10.1016/S0261-5177(01)00080-2.

  • Parsons, S. & Dohnal M. (1995). The qualitative and semiqualitative analysis of environmental problems. Environmental Software, 10, 75−85. doi : 10.1016/0266-9838(95)00008-9.

  • Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11, 341−356. DOI: 10.1007/BF01001956.

  • Price, C.J., Trave-Massuyes, L., Milne, R., Ironi, L., Forbus, K., Bredeweg, B., Lee, M.H., Struss, P., Snooke, N., Lucas, P., Carazza, M. & Coghill G.M. (2006). Qualitative futures. Knowledge Engineering Review, 21, 317−334.DOI: 10.1017/S026988890600097X.

  • Raiman, O. (1991). Order of magnitude reasoning. Artificial Intelligence, 51, 11−38. doi : 10.1016/0004-3702(91)90107-U.

  • Reynolds, P.C. & Braithwaite D. (2001). Towards a conceptual framework for wildlife tourism. Tourism Management, 22, 31−42. doi : 10.1016/S0261-5177(00)00018-2.

  • Režňakova, M., Wouters, H., Dohnal, M. & Brož Z. (2012). Equationless qualitative models of science parks: Part II, optimisation by time sequences of scenarios. International Journal of Technology Intelligence and Planning, 8, 295−306. DOI: 10.1504/IJTIP.2012.048575.

  • Rodger, K., Moore, S.A. & Newsome D. (2009). Wildlife tourism, science and actor network theory. Annals of Tourism Research, 36, 645−666. doi : 10.1016/j.annals.2009.06.001.

  • Salles, P., Bredeweg, B. & Araujo S. (2006a). Qualitative models about stream ecosystem recovery: Exploratory studies.Ecol. Model., 194, 80−89. DOI: 10.1016/j.ecolmodel.2005.10.018.

  • Salles, P., Bredeweg, B. & Bensusan N. (2006b). The ants’ garden: Qualitative models of complex interactions between populations. Ecol. Model., 194, 90−101. DOI: 10.1016/j.ecolmodel.2005.10.004.

  • Semeniuk, C.A.D., Haider, W., Cooper, A. & Rothley K.D. (2010). A linked model of animal ecology and human behavior for the management of wildlife tourism. Ecol. Model., 221, 2699−2713. doi : 10.1016/j.ecolmodel.2010.07.018.

  • Svensson, E. & Nilsson J.A. (1995). Food-supply, territory quality, and reproductive timing in the blue tit (Parus Caeruleus). Ecology, 76, 1804−1812. DOI: 10.2307/1940712.

  • Tisdell, C. & Wilson C. (2002). Ecotourism for the survival of sea turtles and other wildlife. Biodivers. Conserv., 11, 1521−1538. DOI: 10.1023/A:1016833300425.

  • Trave-Massuyes, L., Ironi, L. & Dague P. (2003). Mathematical foundations of qualitative reasoning. AI Magazine, 24, 91−106. DOI: 10.1609/aimag.v24i4.1733.

  • Van Broekhoven, E., Adriaenssens, V., De Baets, B. & Verdonschot P.F.M. (2006). Fuzzy rule-based macroinvertebrate habitat suitability models for running waters. Ecol. Model., 198, 71−84. doi : 10.1016/j.ecolmodel.2006.04.006.

  • Vicha, T. & Dohnal M. (2008a). Qualitative feature extractions of chaotic systems. Chaos, Solitons & Fractals, 38, 364−373. doi : 10.1016/j.chaos.2008.01.008.

  • Vicha, T. & Dohnal M. (2008b). Qualitative identification of chaotic systems behaviours. Chaos, Solitons & Fractals, 38, 70−78. doi : 10.1016/j.chaos.2008.01.027.

  • Wilson, C. & Tisdell C. (2001). Sea turtles as a non-consumptive tourism resource especially in Australia. Tourism Management, 22, 279−288. doi : 10.1016/S0261-5177(00)00059-5.

  • Yorio, P., Frere, E., Gandini, P. & Schiavini A. (2001). Tourism and recreation at seabird breeding sites in Patagonia, Argentina: Current concerns and future prospects. Bird Conserv. Int., 11, 231−245. DOI: 10.1017/ S0959270901000314.


Journal + Issues