Succession of Periphyton and Phytoplankton Assemblages in Years with Varying Amounts of Precipitation in a Shallow Urban Lake (Lake Jeziorak Mały, Poland)

Elžbieta Zębek 1
  • 1 University of Warmia and Mazury, Faculty of Law and Administration, Law of Environmental Protection Laboratory, Warszawska 98, 10-702 Olsztyn, Poland


This study of periphyton assemblages (periphyton in separator pipes, epilithon and epiphyton) and phytoplankton was carried out in Lake Jeziorak Maly in 1997-2003 and 2005. Since precipitation amounts varied in these years, changes in the abundance, biomass, taxonomic group structure, spe-cies diversity and dominant taxa of these assemblages were analyzed in relation to the physical and chemical water parameters. The periphyton in pipes had their highest abundance and biomass at the mean precipitation in the vegetative season and at maximum precipitations in winter 2000, and also in the 1997 vegetative season when there were high levels of electrolytic conductivity and orthophosphate and chloride concentrations. The assemblage was dominated by the diatoms Diatoma vulgaris which was resistant to washing and Navicula gregaria resistant to high amounts of organic matter. Similarly, maximum abundance and biomass of epilithon was found at the maximum precipitation level. However, in 2003 there was a low precipitation level which favoured habitation by epilithic filamentous chlorophytes, especially Ulothrix tenuissima. Meanwhile, epiphyton and phytoplankton thrived best in the high precipitation conditions and moderate chloride concentration in 2001. These assemblages were dominated by species typical for eutrophic waters, such as Gomphonema oliva-ceum and Planktolyngbya brevicellularis. Differences in the dynamics of periphyton assemblages and phytoplankton in the studied years indicate varying succession rates in these assemblages, especially in the separator pipes and on stones. These phenomena are considered to be related to the different environmental conditions engendered by variable amounts of precipitation.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Asaduzzaman, M., Rahman, M.M., Azim, M.E, Islam, M.A., Wahab, M.A., Verdegem, M.C.J. & Verreth J.A.J. (2010). Effects of C/N ratio and substrate addition on natural food communities in freshwater prawn monoculture ponds. Aquaculture, 306, 127-136. DOI: 10.1016/j.aquaculture.2010.05.035.

  • Azim, M.A., Verdegem, M.C.J., van Dam, A.A. & Beveridge C.M. (2005). Periphyton: ecology, exploitation and management. Oxfordshire: CABI Publishing.

  • Battarbee, R.W. (1979). Diatoms in lake sediments. In B.E. Berglund (Ed.), International Geological Correlation Programme Project 158, Paleohydrological Changes in the Temperate Zone in the Last 15,000 Years (pp. 177-225). Subproject B, Lake and Mire Environments. Lund: Department of Quaternary Geology.

  • Bohr, R. & Miotk G. (1979). The primary production of periphytic algae in the south part of the Jeziorak Lake. Acta Uni-versitatis Nicolai Copernici, 47(11), 13-17.

  • Burchard, L. (1993). Bioindication in the assessment of lake ecosystem. In L. Burchard (Ed.), Interdisciplinary investigations of freshwater ecosystems. Idee Ekologiczne, 3(2), 39-44.

  • Danilov, R.A. & Ekuland N.G.A. (2001). Comparison of usefulness of three types of artificial substrata (glass, wood and plastic) when studying settlement pattern of periphyton in lakes of different trophic status. /. Microbiol. Methods, 45, 167-170. DOI: 10.1016/S0167-7012(01)00247-0.

  • France, R. (1995). Differentiation between littoral and pelagic food webs in lake using stable carbon isotopes. Limnol. Oceanogr, 40(7), 1310-1313.

  • Giziňski, A. (1978). Significance of benthal fauna as indicator of eutrophication degree in lakes. Verhandlungen des Internationalen Verein Limnologie, 20, 997-999.

  • Grzesiak, M. & Domaňska W (1998-2004, 2006). Protection of environment. Statistical information and study. Warsaw: Statistical Publishing Establishment.

  • Hansson, L.A. (1990). Quantifying the impact of periphytic algae on nutrient availability for phytoplankton. Freshw. Biol., 24, 265-273. DOI: 10.1111/j.1365-2427.1990.tb00707.x.

  • Irigoien, X., Harris, R.P., Head, R.N. & Harbour D. (2000). North Atlantic Oscillation and spring bloom phytoplankton composition in the English Channel. /. Plankton Res., 22, 2367-2371. DOI: 10.1093/plankt/22.12.2367.

  • Jankowski, A. (1966). Studies on thermal-oxygen conditions in the Lake Jeziorak. Acta Universitatis Nicolai Copernici, 16(2), 17-31.

  • Jöbgen, A.M., Palm, A. & Melkonian M. (2004). Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata. Hydrobiologia, 528, 123-142. DOI: 10.1007/s10750-004-2337-5.

  • Kangro, K., Laugaste, R., Noges, P. & Ott I. (2005). Long-term changes and seasonal development of phytoplankton in a strongly stratified, hypertrophic lake. Hydrobiologia, 547, 91-103. DOI: 10.1007/s10750-005-4151-0.

  • Kuczyňska-Kippen, N., Messyasz, B. & Nagengast B. (2004). The structure of the periphytic communities of the Wielkow-iejskie Lake. Roczniki Akademii Rolniczej w Poznaniu, 358(7), 175-191.

  • Lampert, W. & Sommer U. (1996). Ecology of inland waters. Warsaw: PWN Press.

  • Meffert, M.E. (1989). Planktic unsheathed filaments (Cyanophyceae) with polar and central gas vacuoles. II. Biology, population dynamics and biotopes of Limnothrix redekei (Van Goor) Meffert. Arch. Hydrobiol., 116(3), 257-282.

  • Mischke, U. & Nixdorf B. (2003). Equilibrium phase conditions in shallow German lakes: How Cyanoprokaryota species establish a steady state phase in late summer. Hydrobiológia, 502, 123-132. DOI: 10.1023/B:HYDR.0000004275.81490.92.

  • Müller, U. (2000). Periphytic primary production during spring. A sink of source of oxygen in the littoral zone? Limnologica, 30, 169-174. DOI: 10.1016/S0075-9511(00)80012-2.

  • Nixdorf, B. (1994). Polymixis of a shallow lake (Grober Müggelsee, Berlin) and its influence on seasonal phytoplankton dynamics. Hydrobiologia, 275-276, 173-186. DOI: 10.1007/BF00026709.

  • Nixdorf, B., Mischke, U. & Rücker J. (2003). Phytoplankton assemblages and steady state in deep and shallow eutroph-ic lake - an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia, 502, 111-121. DOI: 10.1023/B:HYDR.0000004274.65831.e5.

  • Nōges, P. & Laugaste R. (1998). Seasonal and long-term changes in phytoplankton of Lake Vörtsjärv. Limnologica, 28(1), 21-28.

  • Nōges, P., Mischke, U., Laugaste, R. & Solimini A.G. (2010). Analysis of changes over 44 years in the phytoplankton of Lake Vörtsjärv (Estonia): the effect of nutrients, climate and the investigator on phytoplankton-based water quality indices. Hydrobiologia, 646, 33-48. DOI: 10.1007/s10750-010-0178-y.

  • Nōges, T., Nōges, P. & Laugaste R. (2003). Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia, 506-509: 257-263. DOI: 10.1023/B:HYDR.0000008540.06592.48.

  • Odum, E.P. (1969). The strategy of ecosystem development. Science, 164, 262-270. DOI: 10.1126/science.164.3877.262.

  • Reynolds, C.S. (1988). The concept of ecological succession applied to seasonal periodicity of freshwater phytoplankton. Verhandlungen des Internationalen Verein Limnologie, 23, 683-691.

  • Reynolds, C.S. (1990). Temporal scales of variability in pelagic environmental and the response of phytoplankton. Freshw. Biol, 23, 25-53. DOI: 10.1111/j.1365-2427.1990.tb00252.x.

  • Reynolds, C.S. (1993). Scales of disturbance and their role in plankton ecology. Hydrobiologia, 249, 157-171. DOI: 10.1007/BF00008851.

  • Rodusky, A.J., Steinman, A.D., East, T.L., Sharfstein, B. & Meeker R.H. (2001). Phytoplankton nutrient limitation and other potential growth - controlling factors in Lake Okeechobee, U.S.A. Hydrobiologia, 448, 27-39. DOI: 10.1023/A:1017529432448.

  • Romo, S. & Miracle R. (1994). Long-term phytoplankton changes in a shallow hypertrophic lake, Albufera of Valencia (Spain). Hydrobiologia, 275-276, 153-164. DOI: 10.1007/BF00026707.

  • Rott, E. (1981). Some results from phytoplankton counting intercalibrations. Schweizerische Zeitschrift für Hydrologie, 43, 34-62. DOI: 10.1007/BF02502471.

  • Shannon, C.E. & Weaver W. (1949). The mathematical theory of communication. Urbana. Sommer, U., Gliwicz, Z.M., Lampert, W. & Duncan A. (1986). The PEG -model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol., 106(4), 433-471.

  • Sommer, U., Padisak, J., Reynolds, C.S. & Juhasz-Nagy P. (1993). Hutchinson’s heritage: the diversity - disturbance relationship in phytoplankton. Hydrobiologia, 249, 1-7. DOI: 10.1007/BF00008837.

  • Szlauer, L. (1996). Determination method of the volume of periphyton components. Pol. Arch. Hydrobiol., 43(1), 3-8.

  • Thebault, E. & Loreau M. (2006). The relationship between biodiversity and ecosystem functioning in food webs. Ecol. Res., 21, 17-25. DOI: 10.1007/s11284-005-0127-9.

  • Vogel, A., Beier, T., Braun, J. & Raeder U. (2005). Does the process of drying submerged macrophytes affect community structure and composition of epiphytic diatoms? Hydrobiologia, 541, 237-240. DOI: 10.1007/s10750-004-4669-6.

  • Wantzen, K.M., Rothaupt, K-O., Mörtl, M., Cantonati, M., G.-Toth, L. & Fischer P. (2008). Ecological effects ofwater-level fluctuations in lakes: an urgent issue. Hydrobiologia, 613, 1-4. DOI: 10.1007/s10750-008-9466-1.

  • Zębek, E. (2002). Influence the restorative works on phytoplankton in the urban Lake Jeziorak Maly. Doctor dissertation.

  • Zębek, E. (2009). Seasonal changes in net phytoplankton in two lakes with differing morphometry and trophic status (northeast Poland). Archives of Polish Fisheries, 17, 267-278. DOI: 10.2478/v10086-009-0019-7.

  • Zębek, E., Bonar, A. & Szymaňska U. (2012). Periphytic diatom communities in the littoral zone of the urban lake Jeziorak Maly (Masurian Lake District, Poland). Ekológia (Bratislava), 31(1), 105-123. DOI: 10.4149/ekol_2012_01_105.

  • Zębek, E. (2013). Differentiation of periphyton and phytoplankton assemblages in anthropogenically transformed conditions of littoral zone in a shallow urban lake (Lake Jeziorak Maly, Poland). Applied Ecology and Environmental Research, 11(3), 323-342.

  • Zębek, E. (2014). Response of cyanobacteria (phytoplankton) and periphyton to stormwater in shallow urban lake (in print).


Journal + Issues