Geographic trends in range sizes explain patterns in bird responses to urbanization in Europe

Open access

Abstract

The probability of occurrence of bird species in towns/cities increases with their range sizes, and Rapoport’s rule states that range sizes increase with latitude. To test the hypothesis that the increasing number of bird species persisting in cities at higher latitudes of Europe is linked to their larger range sizes, we compiled data on bird communities of: a) 41 urban bird atlases; b) 37 city core zones from published sources; c) regions of nine grid cells of the EBCC Atlas of European Breeding Birds around each city. We tested whether the proportion of species from particular regional bird assemblages entering cities (i.e., proportional richness) was related to the geographical position, mean range size of regional avifaunas, proportion of vegetated areas and city habitat heterogeneity. The mean range sizes of the observed and randomly selected urban avifaunas were contrasted. The proportional richness of urban avifaunas was positively related to the geographic position and mean range size of birds in regional assemblages. The evidence favoured range sizes if considering the European range sizes or latitudinal extents, but was limited for global range sizes. Randomizations tended to show larger range sizes for the real avifaunas than in the randomly selected ones. For urban core zones, the results were less clear-cut with some evidence only in favour of the European range sizes. No role of vegetation or habitat heterogeneity was found. In conclusion, while vegetation availability or heterogeneity did not show any effects, spatial position and range sizes of birds in regional assemblages seemed to influence the proportional richness of cities and their core zones. Factors correlated with spatial position (e.g., climate) might increase the attractivity of particular cities to birds. However, the effects of range sizes indicated that urbanization possibly has more negative impacts on the avifauna in the regions occupied by less widespread species.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Arnfield A.J. (2003) Two decades of urban climate research: a review of turbulence exchanges of energy and water and the urban heat island. International Journal of Climatology 23 1–26.

  • BirdLife International (2018) Available at: http://www.birdlife.org.

  • Bonier F. Martin P.R. & Wingfield J.C. (2007) Urban birds have broader environmental tolerance. Biology Letters 3 670–673.

  • Brown J.H. (1995) Macroecology. University of Chicago Press

  • Brown J.H. (2013) On the relationship between abundance and distribution of species. The American Naturalist 124 255–279.

  • Brown J.H. & Kodric-Brown A. (1977) Turnover Rates in Insular Biogeography: Effect of Immigration on Extinction. Ecology 58 445–449.

  • Cardillo M. (2002) The life-history basis of latitudinal diversity gradients: how do species traits vary from the poles to the equator? Journal of Animal Ecology 71 79–87.

  • Cardoso G.C. (2014) Nesting and acoustic ecology but not phylogeny influence passerine urban tolerance. Global Change Biology 20 803–810.

  • Clergeau P. Croci S. Jokimäki J. Kaisanlahti-Jokimäki M.-L. & Dinetti M. (2006) Avifauna homogenization by urbanisation: analysis at different European latitudes. Biological Conservation 127 336–344.

  • Clergeau P. Jokimäki J. & Savard J.P.L. (2001) Are urban bird communities influenced by the bird diversity of adjacent landscapes? Journal of Applied Ecology 38 1122–1134.

  • Conole L.E. & Kirkpatrick J.B. (2011) Functional and spatial differentiation of urban bird assemblages\rat the landscape scale. Landscape and Urban Planning 100 11–23.

  • Croci S. Butet A. & Clergeau P. (2008) Does Urbanization Filter Birds on the Basis of Their Biological Traits? The Condor 110 223–240.

  • Dale S. Lifjeld J.T. & Rowe M. (2015) Commonness and ecology but not bigger brains predict urban living in birds. BMC Ecology 15 12.

  • Díaz M. Møller A.P. Flensted-Jensen E. Grim T. Ibáñez-Álamo J.D. Jokimäki J. Markó G. & Tryjanowski P. (2013) The Geography of Fear: A Latitudinal Gradient in Anti-Predator Escape Distances of Birds across Europe. PLoS ONE 8 e64634.

  • Dinetti M. Cignini B. Fraissinet M. & Zapparoli M. (1995) Gruppo di lavoro ‘Atlanti ornitologici urbani italiani’: standard per le ricerche sull’Avifauna di ambienti urbanizzati’. Rivista italiana di Ornitologia 64 141–149.

  • Erz W. (1966) Ecological principles in the urbanization of birds. Ostrich 37 357–363.

  • Essl F. Dullinger S. Rabitsch W. Hulme P.E. Pyšek P. Wilson J.R.U. & Richardson D.M. (2015) Delayed biodiversity change: no time to waste. Trends in Ecology & Evolution 30 375–378.

  • Evans K.L. Chamberlain D.E. Hatchwell B.J. Gregory R.D. & Gaston K.J. (2011) What makes an urban bird? Global Change Biology 17 32–44.

  • Evans K.L. Newson S.E. & Gaston K.J. (2009) Habitat influences on urban avian assemblages. Ibis 151.

  • Ferenc M. Sedláček O. Fuchs R. Dinetti M. Fraissinet M. & Storch D. (2014a) Are cities different? Patterns of species richness and beta diversity of urban bird communities and regional species assemblages in Europe. Global Ecology and Biogeography 23 479–489.

  • Ferenc M. Sedláček O. & Fuchs R. (2014b) How to improve urban greenspace for woodland birds: site and local-scale determinants of bird species richness. Urban Ecosystems 17 625–640.

  • Ferenc M. Sedláček O. Fuchs R. Hořák D. Storchová L. Fraissinet M. & Storch D. (2018) Large-scale commonness is the best predictor of bird species presence in European cities. Urban Ecosystems 21 369–377.

  • Ferenc M. Sedláček O. Mourková J. Exnerová A. Škopek J. Formánek J. & Fuchs R. (2016) Disentangling the influences of habitat availability heterogeneity and spatial position on the species richness and rarity of urban bird communities in a central European city. Urban Ecosystems 19 1265–1281.

  • Gaston K. & Blackburn T. (2008) Pattern and Process in Macroecology (Google eBook). Blackwell Science Oxford

  • Gaston K.J. Blackburn T.M. Greenwood J.J.D. Gregory R.D. Quinn R.M. & Lawton J.H. (2000) Abundance-occupancy relationships. Journal of Applied Ecology 37 39–59.

  • Gaston K.J. Blackburn T.M. & Spicer J.I. (1998) Rapoport’s rule: time for an epitaph? Trends in Ecology & Evolution 13 70–74.

  • Grimm N.B. Faeth S.H. Golubiewski N.E. Redman C.L. Wu J. Bai X. Briggs J.M. Grimm N.B. Faeth S.H. Golubiewski N.E. Redman C.L. Wu J. Bal X. & Briggs J.M. (2015) Global Change and the Ecology of Cities Global Change and the Ecology of Cities. Science 319 756–760.

  • Hagemeijer W. & Blair M. (1997) The EBCC Atlas of European Breeding Birds. Poyser London

  • Hanski I. (1995) Metapopulation Dynamics. Population (English Edition) 396 41–49.

  • Hu Y. & Cardoso G.C. (2009) Are bird species that vocalize at higher frequencies preadapted to inhabit noisy urban areas? Behavioral Ecology 20 1268–1273.

  • Jokimäki J. & Kaisanlahti-Jokimäki M.L. (2003) Spatial similarity of urban bird communities: A multiscale approach. Journal of Biogeography 30 1183–1193.

  • Jokimäki J. & Suhonen J. (1993) Effects of urbanization on the breeding bird species richness in Finland: a biogeographical comparison.

  • Jokimäki J. Suhonen J. Jokimäki-Kaisanlahti M.L. & Carbó-Ramírez P. (2016a) Effects of urbanization on breeding birds in European towns: Impacts of species traits. Urban Ecosystems 19 1565–1577.

  • Jokimäki J. Suhonen J. & Kaisanlahti-Jokimäki M.-L. (2016b) Urbanization and species occupancy frequency distribution patterns in core zone areas of European towns. European Journal of Ecology 2 23–43.

  • Kark S. Iwaniuk A. Schalimtzek A. & Banker E. (2007) Living in the city: Can anyone become an “urban exploiter”? Journal of Biogeography 34 638–651.

  • Leveau L.M. (2013) Bird traits in urban–rural gradients: how many functional groups are there? Journal of Ornithology 154 655–662.

  • Leveau L.M. Jokimäki J. & Kaisanlahti-Jokimäki M.-L. (2017) Scale dependence of biotic homogenisation by urbanisation: a comparison of urban bird communities between central Argentina and northern Finland. European Journal of Ecology 3 1–18.

  • Luck G.W. & Smallbone L.T. (2011) The impact of urbanization on taxonomic and functional similarity among bird communities. Journal of Biogeography 38 894–906.

  • MacGregor-Fors I. Morales-Pérez L. & Schondube J.E. (2010) Does size really matter? Species–area relationships in human settlements. Diversity and Distributions 17 112–121.

  • Malher F. Lesaffre G. Zucca M. & Coatmeur J. (2010) Oiseaux nicheurs de Paris. Un atlas urbain. Paris: Corif. Delachaux et Niestlé.

  • McKinney M.L. (2006) Urbanization as a major cause of biotic homogenization. Biological Conservation 127 247–260.

  • Meffert P.J. & Dziock F. (2013) The influence of urbanisation on diversity and trait composition of birds. Landscape Ecology 28 943–957.

  • Møller A.P. Jokimäki J. Skorka P. & Tryjanowski P. (2014) Loss of migration and urbanization in birds: a case study of the blackbird (Turdus merula). Oecologia 175 1019–1027.

  • Morelli F. Benedetti Y. Ibáñez-Álamo J.D. Jokimäki J. Mänd R. Tryjanowski P. & Møller A.P. (2016) Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Global Ecology and Biogeography 25 1284–1293.

  • Nychka D. Furrer R. Paige J. & Sain S. (2017) fields: Tools for spatial data..

  • Orme C.D.L. Davies R.G. Olson V.A. Thomas G.H. Ding T.S. Rasmussen P.C. Ridgely R.S. Stattersfield A.J. Bennett P.M. Owens I.P.F. & others (2006) Global patterns of geographic range size in birds. PLoS Biology 4 e208.

  • Paradis E. Claude J. & Strimmer K. (2004) A{PE}: analyses of phylogenetics and evolution in {R} language. Bioinformatics 20 289–290.

  • Purvis A. Gittleman J.L. Cowlishaw G. & Mace G.M. (2000) Predicting extinction risk in declining species. Proceedings of the Royal Society B: Biological Sciences 267 1947–1952.

  • R Core Team (2017) R: A Language and Environment for Statistical Computing..

  • Rapoport E.H. (1982) Areography: Geografical Strategies of Species. Pergamon Press Oxford

  • Rohde K. (1996) Rapoport’s Rule is a Local Phenomenon and Cannot Explain Latitudinal Gradients in Species Diversity. Biodiversity Letters 3 10.

  • Seto K.C. Guneralp B. & Hutyra L.R. (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences 109 16083–16088.

  • Shannon C.E. (1948) A Mathematical Theory of Communication. Bell System Technical Journal 27 379–423.

  • Shmida A. & Wilson M. V. (1985) Biological Determinants of Species Diversity. Journal of Biogeography 12 1.

  • Sol D. (2013) Behavioural adjustments for a life in the city. Animal Behaviour 85 1101–1112.

  • Sol D. González-Lagos C. Moreira D. Maspons J. & Lapiedra O. (2014) Urbanisation tolerance and the loss of avian diversity. Ecology Letters 17 942–950.

  • Stevens G.C. (1989) The Latitudinal Gradient in Geographical Range: How so Many Species Coexist in the Tropics. The American Naturalist 133 240–256.

  • Tryjanowski P. Skórka P. Sparks T.H. Biaduń W. Brauze T. Hetmański T. Martyka Rafałand Indykiewicz P. Myczko Ł. Kunysz P. Kawa P. Czyż S. Czechowski Pawełand Polakowski M.Z.P. Jerzak L. Janiszewski T. Goławski A. Duduś L. Nowakowski J.J. Wuczyński A. & Wysocki D. (2015) Urban and rural habitats differ in number and type of bird feeders and in bird species consuming supplementary food. Environmental Science and Pollution Research 22 15097–15103.

  • Wickham H. (2017) tidyverse: Easily Install and Load the ‘Tidyverse’.

Search
Journal information
Impact Factor


CiteScore 2018: 0.84

Source Normalized Impact per Paper (SNIP) 2018: 0.365

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 51 51 51
PDF Downloads 60 60 60