Distribution modeling, soil properties, and variation in essential oils chemical composition of Rhanterium adpressum Coss. & Dur.

Abstract

Modeling the distribution of Rhanterium adpressum, an endemic species from southwestern Algeria, and the interactions of soil’s chemical properties with the variability of chemical composition of its essential oils makes the objective of this study. Obtained MaxEnt model (AUC = 0.98) showed that the general distribution of genus Rhanterium established mainly by the contribution of eight bioclimatic variables derived from temperature and precipitation (90.5%). Projection of the model in future conditions until 2070 reveals that the habitats of this species will be very affected by climate changes. The analysis of 9 soil samples shows a sandy (77–96%), alkaline, and calcareous character with an electrical conductivity between 0.2 and 1.8 dS/m at 20°C. The chemical composition of terpenoids families during a period of 5 months was dominated by monoterpene hydrocarbons (70–90%) followed by oxygen monoterpenes (4.5–9.2%), hydrocarbon sesquiterpenes (1.6–9.9%), and oxygenated sesquiterpenes (4.3–7.2%). The variation of this composition in relation with phenological cycle and physicochemical properties of the soil was discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alimohammadi, M., Yadegari, M., & Shirmardi, H. A. (2017). Effect of elevation and phenological stages on essential oil composition of Stachys. Turkish Journal of Biochemistry, 42(6), 647-656.

  • Alsafar, M. S., & Al-Hassan, Y. M. (2009). Effect of nitrogen and phosphorus fertilizers on growth and oil yield of indigenous mint (Mentha longifolia L.). Biotechnology, 8(3), 380-384.

  • Attia, W., Tarhouni, M., & Belgacem, A. O. (2014). Dynamique de la steppe à Rhanterium suaveolensen Tunisie présaharienne. Revue des Régions Arides. 34(2), 103-114.

  • Bandopadhyay, S. (2016). Does elevation impact local level climate change? An analysis based on fifteen years of daily diurnal data and time series forecasts. Pacific Science Review A: Natural Science and Engineering, 18(3), 241-253.

  • Battandier, J. A. & Trabut, L. (1888). Flore de l’Algérie, Vol. 1, Alger : Jourdan A.

  • Buri, A., Cianfrani, C., Pinto-Figueroa, E., Yashiro, E., Spangenberg, J. E., Adatte, T. & Pradervand, J. N. (2017). Soil factors improve predictions of plant species distribution in a mountain environment. Progress in Physical Geography, 41(6), 703-722.

  • Chauhan, N. K., Singh, S., Haider, S. Z., & Lohani, H. (2013). Influence of phenological stages on yield and quality of oregano (Origanum vulgare l.) under the agroclimatic condition of doon valley (uttarakhand). Indian journal of pharmaceutical sciences, 75(4): 489–493.

  • Clevenger, J. F. (1928). Apparatus for the determination of volatile oil. The Journal of the American Pharmaceutical Association (1912), 17(4), 345-349.

  • Craufurd, P. Q., & Wheeler, T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental botany, 60(9), 2529-2539.

  • Dagar, J. C. (2005). Salinity research in India: An overview. Bulletin of the National Institute of Ecology, 15, 69-80.

  • El Houiti, F., Tahri, D., Seba, M., Ouinten, M., Gaydou, E. M., & Yousfi, M. (2016). Inhibition of Fusarium oxysporum f. sp. albedinis by essential oils of flowers and stems of Rhanterium adpressum. PhOL PharmacologyOnLine, 3(22), 141-150.

  • Elhouiti, F., Tahri, D., Takhi, D., Ouinten, M., Barreau, C., Verdal-Bonnin, M. N., & Yousfi, M. (2017). Variability of composition and effects of essential oils from Rhanterium adpressum Coss. & Durieu against mycotoxinogenic Fusarium strains. Archives of microbiology, 199(10), 1345-1356.

  • Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., ... & Li, J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129-151.

  • Emongor, V. E., Chweya, J. A., Keya, S. O., & Munavu, R. M. (1990). Effect of nitrogen and phosphorus on the essential oil yield and quality of chamomile (Matricaria chamomilla L.) flowers. East African Agricultural and Forestry Journal, 55(4), 261-264.

  • Erbaş, S., Kucukyumuk, Z., Baydar, H., Erdal, I., & Sanli, A. (2017). Effects of different phosphorus doses on nutrient concentrations as well as yield and quality characteristics of lavandin (Lavandula× intermedia Emeric ex Loisel. var. Super). Turkish Journal Of Field Crops, 22(1), 32-38.

  • Feeny, P. (1976). Plant apparency and chemical defense. In Biochemical interaction between plants and insects (pp. 1-40). Springer, Boston, MA.

  • Fitter, A. H., & Fitter, R. S. R. (2002). Rapid changes in flowering time in British plants. Science, 296(5573), 1689-1691.

  • Golding, N., August, T. A., Lucas, T. C., Gavaghan, D. J., van Loon, E. E., & McInerny, G. (2018). The zoon R package for reproducible and shareable species distribution modelling. Methods in Ecology and Evolution, 9(2), 260-268.

  • Guisan, A., Thuiller, W., & Zimmermann, N. E. (2017). Habitat suitability and distribution models: with applications in R. Cambridge University Press.

  • Hageer, Y., Esperón-Rodríguez, M., Baumgartner, J. B., & Beaumont, L. J. (2017). Climate, soil or both? Which variables are better predictors of the distributions of Australian shrub species?. Peer J, 5, e3446.

  • Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International journal of climatology, 25(15), 1965-1978.

  • Huang, J., Ji, M., Xie, Y., Wang, S., He, Y., & Ran, J. (2016). Global semi-arid climate change over last 60 years. Climate Dynamics, 46(3-4), 1131-1150.

  • Jafari, M., Tavili, A., Panahi, F., Esfahan, E. Z., & Ghorbani, M. (2018). Characteristics of Arid and Desert Ecosystems. In Reclamation of Arid Lands (pp. 21-91). Springer, Cham.

  • Jauffret, S., & Lavorel, S. (2003). Are plant functional types relevant to describe degradation in arid, southern Tunisian steppes?. Journal of Vegetation Science, 14(3), 399-408.

  • Jobbágy, E. G., & Jackson, R. B. (2004). The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology, 85(9), 2380-2389.

  • Lago, J. H. G., Fávero, O. A., & Romoff, P. (2006). Microclimatic factors and phenology influences in the chemical composition of the essential oils from Pittosporum undulatum Vent. leaves. Journal of the Brazilian Chemical Society, 17(7), 1334-1338.

  • Leroy, B., Meynard, C. N., Bellard, C., & Courchamp, F. (2016). Virtual species, an R package to generate virtual species distributions. Ecography, 39(6), 599-607.

  • Lioubimtseva, E. (2004). Climate change in arid environments: revisiting the past to understand the future. Progress in Physical Geography, 28(4), 502-530.

  • Mann, J. (1987). Secondary metabolism. Oxford University Press.

  • Mirjalili, M. H., Salehi, P., Sonboli, A., & Vala, M. M. (2006). Essential oil variation of Salvia officinalis aerial parts during its phenological cycle. Chemistry of Natural Compounds, 42(1), 19-23.

  • Novikoff, C. (1976). Traditional grazing practices and their adaptation to modern conditions in Tunisia and the Sahelian countries. Ecological Bulletins, 55-69.

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231-259.

  • Prasad, A., Chattopadhyay, A., Chand, S., Naqvi, A. A., & Yadav, A. (2006). Effect of Soil Sodicity on Growth, Yield, Essential Oil Composition, and Cation Accumulation in Rose-Scented Geranium. Communications in soil science and plant analysis, 37(13-14), 1805-1817.

  • Schlesinger, W. H., Raikes, J. A., Hartley, A. E., & Cross, A. F. (1996). On the Spatial Pattern of Soil Nutrients in Desert Ecosystems. Ecology, 77(2), 364-374.

  • Sharafzadeh, S., Esmaeili, M., & Mohammadi, A. H. (2011). Interaction effects of nitrogen, phosphorus and potassium on growth, essential oil and total phenolic content of sweet basil. Advances in Environmental Biology, 5(6):1285-1290.

  • Singh, P. K., Verma, N. S., Pandey, N., & Singh, P. (2015). Soil Sodicity Induced Changes in Aromatic Plants: Effects on Growth, Water Relation, Photosynthetic Pigments, Antioxidative Enzymes, Cations Concentration and Quality of Ocimum sanctum. Research Journal of Medicinal Plants, 9: 375, 394.

  • Visser, M. E., & Holleman, L. J. (2001). Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society of London. Series B: Biological Sciences, 268(1464), 289-294.

  • Waring, B. G., Álvarez-Cansino, L., Barry, K. E., Becklund, K. K., Dale, S., Gei, M. G. & Riggs, C. E. (2015). Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’ effects. Proceedings of the Royal Society B: Biological Sciences, 282(1812), 20151001.

  • Wiklund, A. (1986). The genus Rhanterium (Asteraceae: Inuleae). Botanical journal of the Linnean Society, 93(2), 231-246.

  • Yazaki, K., Arimura, G. I., & Ohnishi, T. (2017). ‘Hidden’ terpenoids in plants: their biosynthesis, localization and ecological roles. Plant and Cell Physiology, 58(10):1615-1621.

  • Zhao, X., He, X., Xue, P., Zhang, N., Wu, W., Li, R., & Zhao, H. (2012). Effects of soil stoichiometry of the CaCO3/available phosphorus ratio on plant density in Artemisia ordosica communities. Chinese Science Bulletin, 57(5), 492-499.

OPEN ACCESS

Journal + Issues

Search