Distribution modeling, soil properties, and variation in essential oils chemical composition of Rhanterium adpressum Coss. & Dur.

Open access


Modeling the distribution of Rhanterium adpressum, an endemic species from southwestern Algeria, and the interactions of soil’s chemical properties with the variability of chemical composition of its essential oils makes the objective of this study. Obtained MaxEnt model (AUC = 0.98) showed that the general distribution of genus Rhanterium established mainly by the contribution of eight bioclimatic variables derived from temperature and precipitation (90.5%). Projection of the model in future conditions until 2070 reveals that the habitats of this species will be very affected by climate changes. The analysis of 9 soil samples shows a sandy (77–96%), alkaline, and calcareous character with an electrical conductivity between 0.2 and 1.8 dS/m at 20°C. The chemical composition of terpenoids families during a period of 5 months was dominated by monoterpene hydrocarbons (70–90%) followed by oxygen monoterpenes (4.5–9.2%), hydrocarbon sesquiterpenes (1.6–9.9%), and oxygenated sesquiterpenes (4.3–7.2%). The variation of this composition in relation with phenological cycle and physicochemical properties of the soil was discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Alimohammadi M. Yadegari M. & Shirmardi H. A. (2017). Effect of elevation and phenological stages on essential oil composition of Stachys. Turkish Journal of Biochemistry 42(6) 647-656.

  • Alsafar M. S. & Al-Hassan Y. M. (2009). Effect of nitrogen and phosphorus fertilizers on growth and oil yield of indigenous mint (Mentha longifolia L.). Biotechnology 8(3) 380-384.

  • Attia W. Tarhouni M. & Belgacem A. O. (2014). Dynamique de la steppe à Rhanterium suaveolensen Tunisie présaharienne. Revue des Régions Arides. 34(2) 103-114.

  • Bandopadhyay S. (2016). Does elevation impact local level climate change? An analysis based on fifteen years of daily diurnal data and time series forecasts. Pacific Science Review A: Natural Science and Engineering 18(3) 241-253.

  • Battandier J. A. & Trabut L. (1888). Flore de l’Algérie Vol. 1 Alger : Jourdan A.

  • Buri A. Cianfrani C. Pinto-Figueroa E. Yashiro E. Spangenberg J. E. Adatte T. & Pradervand J. N. (2017). Soil factors improve predictions of plant species distribution in a mountain environment. Progress in Physical Geography 41(6) 703-722.

  • Chauhan N. K. Singh S. Haider S. Z. & Lohani H. (2013). Influence of phenological stages on yield and quality of oregano (Origanum vulgare l.) under the agroclimatic condition of doon valley (uttarakhand). Indian journal of pharmaceutical sciences 75(4): 489–493.

  • Clevenger J. F. (1928). Apparatus for the determination of volatile oil. The Journal of the American Pharmaceutical Association (1912) 17(4) 345-349.

  • Craufurd P. Q. & Wheeler T. R. (2009). Climate change and the flowering time of annual crops. Journal of Experimental botany 60(9) 2529-2539.

  • Dagar J. C. (2005). Salinity research in India: An overview. Bulletin of the National Institute of Ecology 15 69-80.

  • El Houiti F. Tahri D. Seba M. Ouinten M. Gaydou E. M. & Yousfi M. (2016). Inhibition of Fusarium oxysporum f. sp. albedinis by essential oils of flowers and stems of Rhanterium adpressum. PhOL PharmacologyOnLine 3(22) 141-150.

  • Elhouiti F. Tahri D. Takhi D. Ouinten M. Barreau C. Verdal-Bonnin M. N. & Yousfi M. (2017). Variability of composition and effects of essential oils from Rhanterium adpressum Coss. & Durieu against mycotoxinogenic Fusarium strains. Archives of microbiology 199(10) 1345-1356.

  • Elith J. Graham C. H. Anderson R. P. Dudík M. Ferrier S. Guisan A. ... & Li J. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2) 129-151.

  • Emongor V. E. Chweya J. A. Keya S. O. & Munavu R. M. (1990). Effect of nitrogen and phosphorus on the essential oil yield and quality of chamomile (Matricaria chamomilla L.) flowers. East African Agricultural and Forestry Journal 55(4) 261-264.

  • Erbaş S. Kucukyumuk Z. Baydar H. Erdal I. & Sanli A. (2017). Effects of different phosphorus doses on nutrient concentrations as well as yield and quality characteristics of lavandin (Lavandula× intermedia Emeric ex Loisel. var. Super). Turkish Journal Of Field Crops 22(1) 32-38.

  • Feeny P. (1976). Plant apparency and chemical defense. In Biochemical interaction between plants and insects (pp. 1-40). Springer Boston MA.

  • Fitter A. H. & Fitter R. S. R. (2002). Rapid changes in flowering time in British plants. Science 296(5573) 1689-1691.

  • Golding N. August T. A. Lucas T. C. Gavaghan D. J. van Loon E. E. & McInerny G. (2018). The zoon R package for reproducible and shareable species distribution modelling. Methods in Ecology and Evolution 9(2) 260-268.

  • Guisan A. Thuiller W. & Zimmermann N. E. (2017). Habitat suitability and distribution models: with applications in R. Cambridge University Press.

  • Hageer Y. Esperón-Rodríguez M. Baumgartner J. B. & Beaumont L. J. (2017). Climate soil or both? Which variables are better predictors of the distributions of Australian shrub species?. Peer J 5 e3446.

  • Hijmans R. J. Cameron S. E. Parra J. L. Jones P. G. & Jarvis A. (2005). Very high resolution interpolated climate surfaces for global land areas. International journal of climatology 25(15) 1965-1978.

  • Huang J. Ji M. Xie Y. Wang S. He Y. & Ran J. (2016). Global semi-arid climate change over last 60 years. Climate Dynamics 46(3-4) 1131-1150.

  • Jafari M. Tavili A. Panahi F. Esfahan E. Z. & Ghorbani M. (2018). Characteristics of Arid and Desert Ecosystems. In Reclamation of Arid Lands (pp. 21-91). Springer Cham.

  • Jauffret S. & Lavorel S. (2003). Are plant functional types relevant to describe degradation in arid southern Tunisian steppes?. Journal of Vegetation Science 14(3) 399-408.

  • Jobbágy E. G. & Jackson R. B. (2004). The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85(9) 2380-2389.

  • Lago J. H. G. Fávero O. A. & Romoff P. (2006). Microclimatic factors and phenology influences in the chemical composition of the essential oils from Pittosporum undulatum Vent. leaves. Journal of the Brazilian Chemical Society 17(7) 1334-1338.

  • Leroy B. Meynard C. N. Bellard C. & Courchamp F. (2016). Virtual species an R package to generate virtual species distributions. Ecography 39(6) 599-607.

  • Lioubimtseva E. (2004). Climate change in arid environments: revisiting the past to understand the future. Progress in Physical Geography 28(4) 502-530.

  • Mann J. (1987). Secondary metabolism. Oxford University Press.

  • Mirjalili M. H. Salehi P. Sonboli A. & Vala M. M. (2006). Essential oil variation of Salvia officinalis aerial parts during its phenological cycle. Chemistry of Natural Compounds 42(1) 19-23.

  • Novikoff C. (1976). Traditional grazing practices and their adaptation to modern conditions in Tunisia and the Sahelian countries. Ecological Bulletins 55-69.

  • Phillips S. J. Anderson R. P. & Schapire R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological modelling 190(3-4) 231-259.

  • Prasad A. Chattopadhyay A. Chand S. Naqvi A. A. & Yadav A. (2006). Effect of Soil Sodicity on Growth Yield Essential Oil Composition and Cation Accumulation in Rose-Scented Geranium. Communications in soil science and plant analysis 37(13-14) 1805-1817.

  • Schlesinger W. H. Raikes J. A. Hartley A. E. & Cross A. F. (1996). On the Spatial Pattern of Soil Nutrients in Desert Ecosystems. Ecology 77(2) 364-374.

  • Sharafzadeh S. Esmaeili M. & Mohammadi A. H. (2011). Interaction effects of nitrogen phosphorus and potassium on growth essential oil and total phenolic content of sweet basil. Advances in Environmental Biology 5(6):1285-1290.

  • Singh P. K. Verma N. S. Pandey N. & Singh P. (2015). Soil Sodicity Induced Changes in Aromatic Plants: Effects on Growth Water Relation Photosynthetic Pigments Antioxidative Enzymes Cations Concentration and Quality of Ocimum sanctum. Research Journal of Medicinal Plants 9: 375 394.

  • Visser M. E. & Holleman L. J. (2001). Warmer springs disrupt the synchrony of oak and winter moth phenology. Proceedings of the Royal Society of London. Series B: Biological Sciences 268(1464) 289-294.

  • Waring B. G. Álvarez-Cansino L. Barry K. E. Becklund K. K. Dale S. Gei M. G. & Riggs C. E. (2015). Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’ effects. Proceedings of the Royal Society B: Biological Sciences 282(1812) 20151001.

  • Wiklund A. (1986). The genus Rhanterium (Asteraceae: Inuleae). Botanical journal of the Linnean Society 93(2) 231-246.

  • Yazaki K. Arimura G. I. & Ohnishi T. (2017). ‘Hidden’ terpenoids in plants: their biosynthesis localization and ecological roles. Plant and Cell Physiology 58(10):1615-1621.

  • Zhao X. He X. Xue P. Zhang N. Wu W. Li R. & Zhao H. (2012). Effects of soil stoichiometry of the CaCO3/available phosphorus ratio on plant density in Artemisia ordosica communities. Chinese Science Bulletin 57(5) 492-499.

Journal information
Impact Factor

CiteScore 2018: 0.84

Source Normalized Impact per Paper (SNIP) 2018: 0.365

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 63 63 63
PDF Downloads 61 61 61