Seasonal biodiversity and ecological studies on the epiphytic microalgae communities in polluted and unpolluted aquatic ecosystem at Assiut, Egypt

Open access


A qualitative and quantitative study on epiphytic microalgae was carried out seasonally from November 2015 to August 2016 to follow up their community structures on aquatic macrophytes related to some physico-chemical properties of two polluted and unpolluted water bodies at Assiut, Egypt. A total of 169 species related to 64 genera of epiphytic microalgae were recorded. The most dominant algal group was Bacillariophyceae (43.2%), followed by Chlorophyceae (34.91%), Cyanophyceae (20.71%) and Euglenophyceae (1.18%). The total number of epiphytic algae fluctuated between 11.1 × 104 ind.g-1 plant dry wt. on Phragmites australis in summer at Nazlet Abdellah (polluted site) and 10.02 × 107 ind.g-1 plant dry wt. on Myriophyllum spicatum in winter at El-Wasta (unpolluted site). Some epiphytic microalgae were dominant as Pseudanabaena limnetica, Calothrix braunii, Scenedesmus acutus, and Ulnaria ulna. Others were specific on certain macrophytes as Aphanocapsa thermalis and Ulothrix sp., which grow on Phragmites australis, while Synechocystis minuscula attached itself on Myriophyllum spicatum. Analysis of PERMANOVA showed that the most important factors that induced the variation in epiphytic microalgae were the temporal variation and host plant. Water temperature, pH, nitrate, chloride, phosphate and total dissolved salts were the highest abiotic factors correlated with the variation in composition of epiphytic microalgae.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abe S. Uchida K. Nagumo T. & Tanaka J. (2007) Alterations in the biomass-specific productivity of periphyton assemblages mediated by fish grazing. Freshwater Biology 52 1486-1493.

  • Aboellil A. & Aboellil A.H. (2012) Colonization Abilities of Microflora to Attach Aquatic Plants. Global Journal of Science Frontier Research Biological Sciences 12 21-27.

  • Abou-Aisha K.M. Kobbia I.A. El Abyad M.S. Shabana E.F. & Schanz F. (1997) Seasonal changes in Cystoseira myrica and phosphorus input at two sites of the Red Sea Egyptian Coast. Water Air and Soil Pollution 93 199-211.

  • Albay M. & Akcaalan R. (2003) Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake Manyas Turkey. Hydrobiologia 506(1) 531-540.

  • Algarte V.M. Siqueira N.S. Murakami E.A. & Rodrigues L. (2009) Effects of hydrological regime and connectivity on the interannual variation in taxonomic similarity of periphytic algae. Brazilian Journal of Biology 69(2) 609-616.

  • Al-Saboonchi A.A. & Al-Manshad H.N. (2012) Study of Epiphytic Algae on Ceratophyllum demersum L. from Two Stations at Shatt Al- Arab River. Journal of Thi-Qar Science 3 57-63.

  • Anderson M.J. Gorley R.N. & Clarke. K.R. (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E Plymouth.

  • Biolo S. Algarte V.M. & Rodrigues L. (2015) Composition and taxonomic similarity of the periphytic algal community in different natural substrates in a neotropical floodplain Brazil. African Journal of Plant Science 9(1) 17-24.

  • Borowitzka M.A. Lethbridge R.C. & Charlton L. (1990) Species richness spatial distribution and colonisation pattern of algal and invertebrate epiphytes on the seagrass Amphibolis griffithii. Marine Ecology Progress Series 281-291.

  • Bulgariu L. & Bulgariu D. (2012) Direct determination of nitrate in small volumes of natural surface waters using a simple spectrophotometric method. Reviews in Analytical Chemistry 31(3) 201.

  • Davies O.A. (2009) Epiphytic diatoms growing on Nypa Fructican of Okpoka Creek Niger Delta Nigeria and their relationship to water quality. Research Journal of Applied Sciences Engineering and Technology 1 1-9.

  • Demir A.N. Fakioğlu Ö. & Dural B. (2014) Phytoplankton functional groups provide a quality assessment method by the Q assemblage index in Lake Mogan (Turkey). Turkish Journal of Botany 38 169-179.

  • Dere Ş. D. Karacaoğlu & Dalkiran N. (2002) A study on the epiphytic algae of the Nilüfer Stream (Bursa). Turkish Journal of Botany 26 219-234.

  • Dewis J. & Freitas F. (1970) In physical and chemical methods of soil and water analysis. Soil Bulletin No. 10. Food and Agriculture Organization of the United Nations Rome.

  • El-Karim M.S.A. Fishar M. & El-Gawad S.S.A. (2009) Epiphytic Algae and Macroinverteb rates Communities of Myriophyllum spicatum Lemm and Their Cascade in the Littoral Food Web of Lake Nasser Egypt. Global Veterinaria 3(3) 165-177.

  • Fawzy M.A. (2016) Spatial distribution of epiphytic algae growing on the aquatic macrophytes Phragmites australis and Echinochloa stagnina at Assuit-Egypt. Minia Science Bulletin 27(2) 1-26.

  • Frankovich T.A. Gaiser E.E. Zieman J.C. & Wachnicka A.H. (2006) Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex König: Relationships to water quality. Hydrobiologia 569 259-271.

  • Gaiser E.E. McCormick P.V. Hagerthey S.E. & Gottlieb A.D. (2011) Landscape patterns of periphyton in the Florida Everglades. Critical Reviews in Environmental Science and Technology 41 92-120.

  • Ganf G. (1974) Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George Uganda). The Journal of Ecology 611-629.

  • Hassan F.M. Salman J.M. Alkam F.A. & Jawad H.J. (2014) Ecological Observations on Epipelic Algae in Euphrates River at Hindiya and Manathira Iraq. International Journal of Advanced Research 2(4) 1183-1194.

  • Hillebrand H. Worm B. & Lotze H.K. (2000) Marine microbenthic community structure regulated by nitrogen loading and grazing pressure. Marine Ecology Progress Series 204 27-38

  • Jackson M.L. (1958) Soil chemical Analysis constable. Ltd. Co. London 498.

  • Jackson M.L. (1960) Soil chemical analysis. Constable and Co. London pp 261-262.

  • Janne S. & Jani H. (2005) Relationships between local population persistence local and regional occupancy of species: distribution patterns of diatoms in boreal streams. Journal of Biogeography 32 1971-1978.

  • Konsowa A. (2007) Spatial and temporal variation of phytoplankton abundance and composition in the hypersaline Bardawil Lagoon North Sinai Egypt. Journal of Applied Sciences Research 3 1240-1250.

  • Kormas K.A. Nicolaidou A. & Reizopoulou S. (2006) Temporal variation of nutrients chlorophyll a and particulate matter in three coastal lagoons of Amvrakikos gulf Ionian Sea Greece. Marine Ecology 22 201-213.

  • Kramer K. & Lange-Bertalot H. (1991) Süßwasserflora von Mitteleuropa Band 2/4 Teil 4: Achanataceae Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesmatliteraturzeichnis Teil 1-4. Gustav Fischer Verlag Stuttgart Jena 437.

  • Kupferberg S. (2003) Facilitation of periphyton production by tadpole grazing: functional differences between species. Freshwater Biology 37 427-439.

  • Laugaste R. & Reunanen M. (2005) The composition and density of epiphyton on some macrophyte species in the partly meromitic lake Verevi. Hydrobiologia 547 137-150.

  • Liboriussen L. & Jeppesen E. (2003) Temporal dynamics in epipelic pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48 418-431

  • Lund J.W.G. & Canter-Lund H. (1995) Freshwater algae: their microscopic world explored. Biopress Itd. The Ochard Clanage Road Bristol BS3 2JX England pp. 306.

  • McArdle B.H. & Anderson M.J. (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82 290-297.

  • Messyasz B. & Kuczyńska-Kippen N. (2006) Periphytic algal communities: a comparison of Typha angustifolia L. and Chara tomentosa L. beds in three shallow lakes (West Poland) Polish Journal of Ecology 54(1) 15-27.

  • Metzner H. Rau H. & Senger H. (1965) Untersuchungen zur synchronisier- barkeit ein zelner pigment managel. Mutanten von Chlorella. Planta 65 186-194.

  • Mormul R.P. Thomaz S.M. Da Silveira M.J. & Rodrigues L. (2010). Epiphyton or macrophyte: Which primary producer attracts the snail Hebetancylus moricandi? American Malacological Bulletin 28(1-2) 127-133.

  • Patrick R. Cairns J. & Scheier A. (1968) The relative sensitivity of diatoms snails and fish to twenty common constituents of industrial wastes. Progressive Fish-Culturist 30 137-140.

  • Pearson G.A. & Evans L.V. (1990) Settlement and survival of Polysiphonia lanosa (Ceramiales) spores on Ascophyllum nodosum and Fucus vesiculosus (Fucales). Journal of Phycology 26 597-603.

  • Ruesink J.L. (1998) Diatom epiphytes on Odonthalia floccosa: The importance of extent and timing Journal of Phycology 34 29-38.

  • Salman J.M. Hadi S.H. & Mutaer A.A. (2013) Spatial and temporal distribution of phytoplankton and some related physical and chemical properties in al-abasia river (Euphrates) Iraq. International Journal of Geology Earth & Environmental Sciences 3(3) 155-169.

  • Schwarzenbeck G. & Biederman W. (1948) Komplexone.X. Erdalkalikomplexe von 0 6-di-oxyazofarbstoffen. Helvetica Chimica Acta 31 678-687.

  • Sheen R.T. Kahler H.L. & Ross E.M. (1935) Turbidmetric determination of sulfate in water. Industrial & Engineering Chemistry Analytical Edition 7 262-265.

  • Song Y.Z. Wang J.Q. & Gao Y.X. (2017) Effects of epiphytic algae on biomass and physiology of Myriophyllum spicatum L. with the increase of nitrogen and phosphorus availability in the water body. Environmental Science and Pollution Research 24 9548-9555.

  • Sullivan M.J. (1984) Community Structure of Epiphytic Diatoms from the Gulf Coast of Florida USA. In: Proceedings of the Seventh International Diatom Symposium Mann D.G. (Ed.) Otto Koeltz- Science Publishers Philadelphia pp. 373-384.

  • Sundbäck K. & Snoeijs P. (1991) Effects of nutrient enrichment on microalgal community composition in a coastal shallow water sediment system: an experimental study. Botanica Marina 34 341-358.

  • Thomaz S.M. Dibble E.D. Evangelista L.R. Higuti J. & Bini L.M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater biology 53(2) 358-367.

  • Toporowska M. Pawlik-Skowrońska B. & Wojtal A. (2008) Epiphytic algae on Stratiotes aloides L. Potamogeton lucens L. Ceratophyllum demersum L. and Chara spp. in a macrophyte-dominated lake. Oceanological and Hydrobiological Studies 37 51-63.

  • Tóth V.R. (2013) The effect of periphyton on the light environment and production of Potamogeton perfoliatus L. in the mesotrophic basin of Lake Balaton. Aquatic sciences 75 523-534.

  • Verhulst S. (2013) Response of the Epiphytic Algal Communities to Experimentally Elevated Nutrient Levels in Intertidal Salt Marsh Habitats . UNF Thesis and Dissertations 435.

  • Wahl M. & Mark O. (1999) The predominantly facultative nature of epibiosis: experimental and observational evidence. Marine Ecology Progress Series 187 59-66.

  • Wetzel R.G. (1993) Microcommunities and microgradients: linking nutrient regeneration microbial mutualism and high sustained aquatic primary production. Aquatic Ecology 27 3-9.

  • Williams C.H. & Twine J.R. (1960) Flame photometric method for sodium potassium and calcium. In: K. Peach & Tracey (Eds.). Modern Methods of Plant Analysis. Springer Verlag Berlin Goettingen Heidelberg 5 3-5.

Impact Factor

CiteScore 2018: 0.84

Source Normalized Impact per Paper (SNIP) 2018: 0.365

Cited By
Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 459 136 13
PDF Downloads 339 115 4