Biologically informed ecological niche models for an example pelagic, highly mobile species

Open access


Background: Although pelagic seabirds are broadly recognised as indicators of the health of marine systems, numerous gaps exist in knowledge of their at-sea distributions at the species level. These gaps have profound negative impacts on the robustness of marine conservation policies. Correlative modelling techniques have provided some information, but few studies have explored model development for non-breeding pelagic seabirds. Here, I present a first phase in developing robust niche models for highly mobile species as a baseline for further development. Methodology: Using observational data from a 12-year time period, 217 unique model parameterisations across three correlative modelling algorithms (boosted regression trees, Maxent and minimum volume ellipsoids) were tested in a time-averaged approach for their ability to recreate the at-sea distribution of non-breeding Wandering Albatrosses (Diomedea exulans) to provide a baseline for further development. Principle Findings/Results: Overall, minimum volume ellipsoids outperformed both boosted regression trees and Maxent. However, whilst the latter two algorithms generally overfit the data, minimum volume ellipsoids tended to underfit the data. Conclusions: The results of this exercise suggest a necessary evolution in how correlative modelling for highly mobile species such as pelagic seabirds should be approached. These insights are crucial for understanding seabird-environment interactions at macroscales, which can facilitate the ability to address population declines and inform effective marine conservation policy in the wake of rapid global change.

Anderson, R.P. (2003) Real vs. artefactual absences in species distributions: tests for Oryzomys albigularis (Rodentia:Muridae) in Venezuela. Journal of Biogeography, 30, 591-605.

Barbet-Massin, M., Jiguet, F., Albert, C.H. & Thuiller, W. (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods in Ecology and Evolution, 3, 327-338.

Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S.P., Peterson, A.T., et al. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222, 1810-1819.

Beck, J., Ballesteros-Mejia, L., Nagel, P. & Kitching, I.J. (2013) Online solutions and the ‘Wallacean shortfall’: what does GBIF contribute to our knowledge of species’ ranges? Diversity and Distributions, 19, 1043-1050.

Beck, J., Boller, M., Erhardt, A. & Schwanghart, W. (2014) Spatial bias in the GBIF database and its effect on modeling species’ geographic distributions. Ecological Informatics, 19, 10-15.

Bellier, E.G., Certain, G., Planque, B., Monestiez, P. & Bretagnolle, V. (2010) Modelling habitat selection at multiple scales with multivariate geostatistics: an application to seabirds in open sea. Oikos, 119, 988-999.

Birdlife International and Natureserve (2015b) Marine IBA e-Atlas:

Burg, T.M. & Croxall, J.P. (2004) Global population structure and taxonomy of the Wandering Albatross species complex. Molecular Ecology, 13, 2345-2355.

Catry, P., Lemos, R.T., Brickle, P., Phillips, R.A., Matias, R. & Granadeiro, J.P. (2013) Predicting the distribution of a threatened albatross: the importance of competition, fisheries and annual variability. Progress in Oceanography, 110, 1-10.

Ceia, F.R., Phillips, R.A., Ramos, J.A., Cherel, Y., Vieira, R.P., Richard, P., et al. (2012) Short- and long-term consistency in the foraging niche of Wandering Albatrosses. Marine Biology, 159, 1581-1591.

Chambers, G.K., Moeke, C., Steel, R. & Trueman, J.W. (2009) Phylogenetic analysis of the 24 named albatross taxa based on full mitochondrial cytochrome b DNA sequences. Notornis, 56, 82-94.

Clay, T.A., Manica, A., Ryan, P. G., Silk, J.R.D., Croxall, J.P., Ireland, L. & Phillips, R.A. (2016) Proximate drivers of spatial segregation in non-breeding albatrosses. Scientific Reports, 6, 29932.

Coble, P.G. (2007) Marine optical biogeochemistry: The chemistry of ocean color. Chemical Reviews, 107, 402-418.

Croxall, J.P., Butchart, S.H.M., Lascelles, B., Stattersfield, A.J., Sullivan, B., Symes, A., et al. (2012) Seabird conservation status, threats and priority actions: a global assessment. Bird Conservation International, 22, 1-34.

Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J.P., Chan, F., English, C.A., et al. (2012) Climate change impacts on marine ecosystems. Annual Review of Marine Science, 4, 11-37.

Elith, J., Graham, C.H., Anderson, R.P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151.

Elith, J., Leathwick, J.R. & Hastie, T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802-813.

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. (2011) A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43-57.

Game, E.T., Grantham, H.S., Hobday, A.J., Pressey, R.L., Lombard, A.T., Beckley, L.E., et al. (2009) Pelagic protected areas: the missing dimension in ocean conservation. Trends in Ecology & Evolution, 24, 360-369.

Graham, C.H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A.T. (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution, 19, 497-503.

Grecian, W.J., Witt, M.J., Attrill, M.J., Bearhop, S., Godley, B.J., Grémillet, D., et al. (2012) A novel projection technique to identify important at-sea areas for seabird conservation: an example using Northern Gannets breeding in the North East Atlantic. Biological Conservation, 156, 43-52.

Hyrenbach, K.D., Forney, K.A. & Dayton, P.K. (2000) Marine protected areas and ocean basin management. Aquatic Conservation-Marine and Freshwater Ecosystems, 10, 437-458.

Hyrenbach, K.D., Veit, R.R., Weimerskirch, H., Metzl, N. & Hunt, G.L. (2007) Community structure across a large-scale ocean productivity gradient: marine bird assemblages of the southern Indian Ocean. Deep-Sea Research Part I-Oceanographic Research Papers, 54, 1129-1145.

Iucn (2016) IUCN Red List of Threatened Species v2015-4:

Kramer-Schadt, S., Niedballa, J., Pilgrim, J.D., Schroder, B., Lindenborn, J., Reinfelder, V., et al. (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions, 19, 1366-1379.

Krüger, L., Ramos, J.A., Xavier, J.C., Grémillet, D., González‐Solís, J., Petry, M.V., Phillips, R.A., Wanless, R.M. & Paiva, V.H. (2017) Projected distributions of Southern Ocean albatrosses, petrels and fisheries as a consequence of climatic change. Ecography,

Lascelles, B.G., Langham, G.M., Ronconi, R.A. & Reid, J.B. (2012) From hotspots to site protection: identifying Marine Protected Areas for seabirds around the globe. Biological Conservation, 156, 5-14.

Lewison, R., Oro, D., Godley, B., Underhill, L., Bearhop, S., Wilson, R.P., et al. (2012) Research priorities for seabirds: improving conservation and management in the 21st century. Endangered Species Research, 17, 93-121.

Lobo, J.M., Jiménez-Valverde, A. & Real, R. (2008) AUC: a misleading measure of the performance of predictive distribution models. Global Ecology and Biogeography, 17, 145-151.

Louzao, M., Pinaud, D., Péron, C., Delord, K., Wiegand, T. & Weimerskirch, H. (2011) Conserving pelagic habitats: seascape modelling of an oceanic top predator. Journal of Applied Ecology, 48, 121-132.

Louzao, M., Aumont, O., Hothorn, T., Wiegand, T. & Weimerskirch, H. (2013) Foraging in a changing environment: habitat shifts of an oceanic predator over the last half century. Ecography, 36, 57-67.

Mateo, R.G., De La Estrella, M., Felicísimo, Á.M., Munoz, J. & Guisan, A. (2013) A new spin on a compositionalist predictive modelling framework for conservation planning: a tropical case study in Ecuador. Biological Conservation, 160, 150-161.

Mcgowan, J., Hines, E., Elliott, M., Howar, J., Dransfield, A., Nur, N., et al. (2013) Using seabird habitat modeling to inform marine spatial planning in central California’s National Marine Sanctuaries. PLoS One, 8, e71406.

Merow, C., Smith, M.J. & Silander, J.A. (2013) A practical guide to Max-Ent for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 1058-1069.

Milot, E., Weimerskirch, H. & Bernatchez, L. (2008) The seabird paradox: dispersal, genetic structure and population dynamics in a highly mobile, but philopatric albatross species. Molecular Ecology, 17, 1658-1673.

Nelson, N.B. & Siegel, D.A. (2013) The global distribution and dynamics of chromophoric dissolved organic matter. Annual Review of Marine Science, 5, 447-476.

Nunn, G.B., Cooper, J., Jouventin, P., Robertson, C.J.R. & Robertson, G.G. (1996) Evolutionary relationships among extant albatrosses (Procellariiformes: Diomedeidae) established from complete cytochrome-B gene sequences. Auk, 113, 784-801.

Onley, D. & Scofield, P. (2007) Albatrosses, petrels, & shearwaters of the world. Princeton University Press, Princeton, New Jersey.

Oppel, S., Meirinho, A., Ramírez, I., Gardner, B., O’connell, A.F., Miller, P.I., et al. (2012) Comparison of five modelling techniques to predict the spatial distribution and abundance of seabirds. Biological Conservation, 156, 94-104.

Owens, H.L., Campbell, L.P., Dornak, L.L., Saupe, E.E., Barve, N., Soberon, J., et al. (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling, 263, 10-18.

Peterson, A.T., Martínez-Campos, C., Nakazawa, Y. & Martínez-Meyer, E. (2005) Time-specific ecological niche modeling predicts spatial dynamics of vector insects and human dengue cases. Transactions of the Royal Society of Tropical Medicine and Hygiene, 99, 647-655.

Peterson, A.T. (2006) Uses and requirements of ecological niche models and related distribution models. Biodiversity Informatics, 3, 59-72.

Peterson, A.T., Papeş, M. & Soberón, J. (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling, 213, 63-72.

Phillips, R.A., Silk, J.R.D., Croxall, J.P., Afanasyev, V. & Bennett, V.J. (2005) Summer distribution and migration of nonbreeding albatrosses: individual consistencies and implications for conservation. Ecology, 86, 2386-2396.

Phillips, S.J., Anderson, R.P. & Schapire, R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.

Phillips, S.J., Dudík, M., Elith, J., Graham, C.H., Lehmann, A., Leathwick, J., et al. (2009) Sample selection bias and presence-only distribution models: implications for background and pseudoabsence data. Ecological Applications, 19, 181-197.

Piatt, J.F., Sydeman, W.J. & Wiese, F. (2007) Introduction: a modern role for seabirds as indicators. Marine Ecology Progress Series, 352, 199-204.

Prince, P.A., Wood, A.G., Barton, T. & Croxall, J.P. (1992) Satellite tracking of Wandering Albatrosses (Diomedea exulans) in the South Atlantic. Antarctic Science, 4, 31-36.

Qiao, H.J., Soberón, J. & Peterson, A.T. (2015) No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution, 6, 1126-1136.

Quillfeldt, P., Engler, J.O., Silk, J.R., Phillips, R.A. (2017) Influence of device accuracy and choice of algorithm for species distribution modelling of seabirds: a case study using black‐browed albatrosses. Journal of Avian Biology,

R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing:

Rains, D., Weimerskirch, H. & Burg, T.M. (2011) Piecing together the global population puzzle of Wandering Albatrosses: genetic analysis of the Amsterdam albatross Diomedea amsterdamensis. Journal of Avian Biology, 42, 69-79.

Ramos, R., Sanz, V., Militao, T., Bried, J., Neves, V.C., Biscoito, M., et al. (2015) Leapfrog migration and habitat preferences of a small oceanic seabird, Bulwer’s petrel (Bulweria bulwerii). Journal of Biogeography, 42, 1651-1664.

Roberts, J.J., Best, B.D., Dunn, D.C. & Halpin, P.N. (2010) Marine Geospatial Ecology Tools: an integrated framework for eological geoprocessing with ArcGIS, Python, R, MATLAB, and C++. Environmental Modelling and Software, 25, 1197-1207.

Rodríguez, J.P., Brotons, L., Bustamante, J. & Seoane, J. (2007) The application of predictive modelling of species distribution to biodiversity conservation. Diversity and Distributions, 13, 243-251.

Saupe, E.E., Barve, V., Myers, C.E., Soberόn, J., Barve, N., Hensz, C.M., et al. (2012) Variation in niche and distribution model performance: the need for a priori assessment of key causal factors. Ecological Modelling, 237, 11-22.

Scales, K.L., Miller, P.I., Ingram, S.N., Hazen, E.L., Bograd, S.J. & Phillips, R.A. (2016) Identifying predictable foraging habitats for a wide-ranging marine predator using ensemble ecological niche models. Diversity and Distributions, 22, 212-224.

Shcheglovitova, M. & Anderson, R.P. (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecological Modelling, 269, 9-17.

Soberón, J. & Peterson, A.T. (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1-10.

Sousa-Baena, M.S., Garcia, L.C. & Peterson, A.T. (2014) Completeness of digital accessible knowledge of the plants of Brazil and priorities for survey and inventory. Diversity and Distributions, 20, 369-381.

Thiebot, J.B., Lescroel, A., Pinaud, D., Trathan, P.N. & Bost, C.A. (2011) Larger foraging range but similar habitat selection in non-breeding versus breeding sub-Antarctic penguins. Antarctic Science, 23, 117-126.

Urtizberea, A., Dupont, N., Rosland, R. & Aksnes, D.L. (2013) Sensitivity of euphotic zone properties to CDOM variations in marine ecosystem models. Ecological Modelling, 256, 16-22.

Wakefield, E.D., Phillips, R.A. & Matthiopoulos, J. (2009) Quantifying habitat use and preferences of pelagic seabirds using individual movement data: a review. Marine Ecology Progress Series, 391, 165-182.

Wakefield, E.D., Phillips, R.A., Trathan, P.N., Arata, J., Gales, R., Huin, N., et al. (2011) Habitat preference, accessibility, and competition limit the global distribution of breeding Black-browed Albatrosses. Ecological Monographs, 81, 141-167.

Weimerskirch, H., Inchausti, P., Guinet, C. & Barbraud, C. (2003) Trends in bird and seal populations as indicators of a system shift in the Southern Ocean. Antarctic Science, 15, 249-256.

Weimerskirch, H., Gault, A. & Cherel, Y. (2005) Prey distribution and patchiness: factors in foraging success and efficiency of Wandering Albatrosses. Ecology, 86, 2611-2622.

Weimerskirch, H., Åkesson, S. & Pinaud, D. (2006) Postnatal dispersal of Wandering Albatrosses Diomedea exulans: implications for the conservation of the species. Journal of Avian Biology, 37, 23-28.

Weimerskirch, H., Jouventin, P., Mougin, J.L., Stahl, J.C. & Vanbeveren, M. (1985) Banding recoveries and the dispersal of seabirds breeding in French Austral and Antarctic Territories. Emu, 85, 22-33.

Weimerskirch, H., Louzao, M., De Grissac, S. & Delord, K. (2012) Changes in wind pattern alter albatross distribution and life-history traits. Science, 335, 211-214.

Yesson, C., Brewer, P.W., Sutton, T., Caithness, N., Pahwa, J.S., Burgess, M., et al. (2007) How global is the Global Biodiversity Information Facility? PLoS One, 2, e1124.

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 280 280 80
PDF Downloads 122 122 43