Global analysis of threat status reveals higher extinction risk in tropical than in temperate bird sister species

Open access

Abstract

Given increasing pressures upon biodiversity, identification of species’ traits related to elevated extinction risk is useful for more efficient allocation of limited resources for nature conservation. Despite its need, such a global analysis was lacking in the case of birds. Therefore, we performed this exercise for avian sister species using information about their global extinction risk from IUCN Red List. We focused on 113 pairs of sister species, each containing a threatened and an unthreatened species to factor out the effects of common evolutionary history on the revealed relationship. We collected data on five traits with expected relationships to species’ extinction risk based on previous studies performed at regional or national levels: breeding habitat (recognizing forest, grassland, wetland and oceanic species), latitudinal range position (temperate and tropics species), migration strategy (migratory and resident species), diet (carnivorous, insectivorous, herbivorous and omnivorous species) and body mass. We related the extinction risk using IUCN threat level categories to species’ traits using generalised linear mixed effects models expecting lower risk for forest, temperate, omnivorous and smaller-bodied species. Our expectation was confirmed only in the case of latitudinal range position, as we revealed higher threat level for tropical than for temperate species. This relationship was robust to different methods of threat level expression and cannot be explained by a simple association of high bird species richness with the tropical zone. Instead, it seems that tropical species are more threatened because of their intrinsic characteristics such as slow life histories, adaptations to stable environments and small geographic ranges. These characteristics are obviously disadvantageous in conditions of current human-induced environmental perturbations. Moreover, given the absence of habitat effects, our study indicates that such perturbations act across different tropical environments. Therefore, disproportionally higher conservation effort in the tropics compared to the temperate zone is urgently needed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Ackerly D.D. & Cornwell W.K. (2007) A trait-based approach to community assembly: partitioning of species trait values into within-and among-community components. Ecology Letters 10 135-145.

  • Atkinson P.W. Adams W.M. Brouwer J. Buchanan G. Cheke R.A. Cresswell W. et al. (2014) Defining the key wintering habitats in the Sahel for declining African-Eurasian migrants using expert assessment. Bird Conservation International 24 477-491.

  • Barnagaud J.Y. Kissling W.D. Sandel B. Eiserhardt W.L. Sekercioglu C.H. Enquist B.J. et al. (2014) Ecological traits influence the phylogenetic structure of bird species co-occurrences worldwide. Ecology Letters 17 811-820.

  • Barnosky A.D. Matzke N. Tomiya S. Wogan G.O.U. Swartz B. Quental T.B. et al. (2011): Has the Earth’s sixth mass extinction already arrived? Nature 471 51-57.

  • Böhning-Gaese K. Halbe B. Lemoine N. Oberrath R. (2000) Factors influencing the clutch size number of broods and annual fecundity of North American and European land birds. Evolutionary Ecology Research 2 823-839.

  • Borregaard M.K. & Rahbek C. (2010) Causality of the relationship between geographic distribuition and species abundance. Quarterly Review of Biology 85 3-25.

  • Both C. Van Turnhout C.A.M. Bijlsma R.G. Siepel H. Van Strien A.J. & Foppen R.P.B. (2010) Avian population consequences of climate change are most severe for long-distance migrants in seasonal habitats. Proceedings of The Royal Society of London B 277 1259-1266.

  • Bruderer B. & Salewski V. (2008) Evolution of bird migration in a biogeographical context. Journal of Biogeography 35 1951-1959.

  • Butchart S.H.M. Walpole M. Collen B. van Strien A. Scharlemann J.P.W. Almond R.E.A. et al. (2010) Global biodiversity: indicators of recent declines. Science 328 1164-1168.

  • Cardillo M. & Meijaard E. (2012) Are comparative studies of extinction risk useful for conservation? Trends in Ecology and Evolution 27 167-171.

  • Chyralecki P. & Selva N. (2016) Ancient forest: spare it from clearance. Nature 530 419.

  • Croxall J.P. Butchart S.H.M. Lascelles B. Stattersfield A.J. Sullivan B. Symes A. et al. (2012) Seabird conservation status threats and priority actions: a global assessment. Bird Conservation International 22 1-34.

  • Davey C.M. Chamberlain D.E. Newson S.E. Noble D.G. & Johnston A. (2012) Rise of the generalists: Evidence for climate driven homogenization in avian communities. Global Ecology and Biogeography 21 568-578.

  • Davies R.G. Orme C.D.L. Storch D. Olson V.A. Thomas G.H. Ross S.G. et al. (2007) Topography energy and the global distribution of bird species richness. Proceedings of The Royal Society of London B 274 1189-1197.

  • del Hoyo J. Elliott A. & Sargatal J. (1992-2001) Handbook of the birds of the world (Vols. I-VII). Barcelona: Lynx editions.

  • del Hoyo J. Elliott A. & Christie D.A. (2003-2011) Handbook of the birds of the world (Vols. VIII-XVI). Barcelona: Lynx editions.

  • Dirzo R. Young H.S. Galetti M. Ceballos G. Isaac N.J.B. & Collen B. (2014) Defaunation in the Anthropocene. Science 345 401-406.

  • Donald P.F. Green R.E. & Heath M.F. (2001) Agricultural intensification and the collapse of Europe’s farmland bird populations. Proceedings of The Royal Society of London B 268 25-29.

  • Dynesius M. & Jansson R. (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proceedings of The National Academy of Sciences of The United States of America 97 9115-9120.

  • Estrada A. Meireles C. Morales-Castilla I. Poschlod P. Vieites D. Araujo M.B. et al. (2015) Species’ intrinsic traits inform their range limitations and vulnerability under environmental change. Global Ecology and Biogeography 24 849-858.

  • Fjeldså J. Bowie R.C.K. & Rahbek C. (2012) The role of mountain ranges in the diversification of birds. Annual Review of Ecology Evolution and Systematics 43 249-265.

  • Foley J.A. Ramankutty N. & Brauman. K.A. (2011) Solutions for a cultivated planet. Nature 478 337-342.

  • Gibson L. Lee T.M. Koh L.P. Brook B.W. Gardner T.A. Barlow J. et al. (2011) Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478 378-381.

  • Greenberg R. & Marra P.P. (2005) Birds of two worlds: the ecology and evolution of migration. Baltimore: John Hopkins University Press.

  • Hansen M.C. Potapov P.V. Moore R. Hancher M. Turubanova S.A. Tyukavina A. et al. (2013) High-resolution global maps of 21st-century forest cover change. Science 342 850-853.

  • Hoffmann M. Hilton-Taylor C. Angulo A. Böhm M. Brooks T.M. Butchart S.H.M. et al. 2010. The impact of conservation on the status of the world’s vertebrates. Science 330 1503-1509.

  • Hurlbert A.H. & Jetz W. (2007) Species richness hotspots and the scale dependence of range maps in ecology and conservation. Proceedings of The National Academy of Sciences of The United States of America 104 13384-13389.

  • Janssen R. & Rutz D. (2011) Bioenergy for sustainable development in Africa. New York: Springer.

  • Janzen D.H. (1967) Why mountain passes are higher in the tropics? American Naturalist 101 233-249.

  • Jenkins C.N. Pimm S.L. & Joppa L.N. (2013) Global patterns of terrestrial vertebrate diversity and conservation. Proceedings of The National Academy of Sciences of The United States of America 110 E2602-E2610.

  • Jiguet F. Gadot A.S. Julliard R. Newson S.E. & Couvet D. (2007) Climate envelope life history traits and the resilience of birds facing global change. Global Change Biology 13 1672-1684.

  • Kamp J. Urazaliev R. Donald P.F. & Hölzel N. (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biological Conservation 144 2607-2614.

  • Koleček J. Albrecht T. & Reif J. (2014a) Predictors of extinction risk of passerine birds in a Central European country. Animal Conservation 17 498-506.

  • Koleček J. Schleuning M. Burfield I.J. Báldi A. Böhning-Gaese K. Devictor V. et al. (2014b): Birds protected by national legislation show improved population trends in Eastern Europe. Biological Conservation 172 109-116.

  • Laiolo P. Dondero F. Ciliento E. & Rolando A. (2004) Consequences of pastoral abandonment for the structure and diversity of the alpine avifauna. Journal of Applied Ecology 41 294-304.

  • Laurance W.F. Sayer J. & Cassman K.G. (2014) Agricultural expansion and its impacts on tropical nature. Trends in Ecology and Evolution 29 107-116.

  • Mace G.M. Collar N.J. Gaston K.J. Hilton-Taylor C. Akcakaya H.R. Leader-Williams N. et al. (2008) Quantification of extinction risk: IUCN’s system for classifying threatened species. Conservation Biology 22 1424-1442.

  • Manne L.L. Brooks T.M. & Pimm S.L. (1999) Relative risk of extinction of passerine birds on continents and islands. Nature 399 258-261.

  • Manne L.L. & Pimm S.L. (2001) Beyond eight forms of rarity: which species are threatened and which will be next? Animal Conservation 4 221-229.

  • McGill B.J. (2008) Exploring predictions of abundance from body mass using hierarchical comparative approaches. American Naturalist 172 88-101.

  • Newton I. (2003) The speciation and biogeography of birds. London: Academic Press.

  • Orme C.D.L Davies R.G. Burgess M. Eigenbrod F. Pickup N. Olson V.A. et al. (2005) Global hotspots of species richness are not congruent with endemism or threat. Nature 436 1016-1019.

  • Orme C.D.L. Davies R.G. Olson V.A. Thomas G.H. Ding T.S. Rasmussen P.C. et al. (2006) Global patterns of geographic range size in birds. PLoS Biology 4 1276-1283.

  • Owens I.P.F. & Bennett P.M. (2000) Ecological basis of extinction risk in birds: habitat loss versus human persecution and introduced predators. Proceedings of The National Academy of Sciences of The United States of America 97 12144-12148.

  • Pearman P.B. Lavergne S. Roquet C. Wuest R. Zimmermann N.E. & Thuiller W. (2014) Phylogenetic patterns of climatic habitat and trophic niches in a European avian assemblage. Global Ecology and Biogeography 23 414-424.

  • Pigot A.L. & Tobias J.A. (2013) Species interactions constrain geographic range expansion over evolutionary time. Ecology Letters 16 330-338.

  • Pimm S.L. Jenkins C.N. Abell R. Brooks T.M. Gittleman J.L. Joppa L.N. et al. (2014) The biodiversity of species and their rates of extinction distribution and protection. Science 344 987.

  • Reif J. Vermouzek Z. Voříšek P. Šťastný K. Bejček V. Flousek J. (2010) Population changes in Czech passerines are predicted by their life-history and ecological traits. Ibis 152 610-621.

  • Ricklefs R.E. (2007) History and diversity: explorations at the intersection of ecology and evolution. American Naturalist 170 S56-S70.

  • Sandel B. Arge L. Dalsgaard B. Davies R.G. Gaston K.J. Sutherland W.J. et al. (2011) The ionfluence of late Quaternary climate-change velocity on species endemism. Science 334 660-664.

  • Sæther B.E. Lande R. Engen S. Weimerskirch H. Lillegard L. Altwegg R. et al. (2005) Generation time and temporal scaling of bird population dynamics. Nature 436 99-102.

  • Sibley C.G. & Monroe B.L. (1990) Distribution and taxonomy of birds of the world. New Haven: Yale University Press.

  • Sirami C. & Monadjem A. (2012) Changes in bird communities in Swaziland savannas between 1998 and 2008 owing to shrub encroachment. Diversity and Distributions 18 390-400.

  • Šizling A.L. Storch D. & Keil P. (2009) Rapoport’s rule species tolerances and the latitudinal diversity gradient: geometric considerations. Ecology 90 3575-3586.

  • Sodhi N.S. Butler R. Laurance W.F. & Gibson L. (2011) Conservation successes at micro- meso- and macroscales. Trends in Ecology and Evolution 26 585-594.

  • Sol D. Maspons J. Vall-llosera M. Bartomeus I. Garcia-Pena G.E. Pinol J. et al. (2012) Unraveling the life history of successful invaders. Science 337 580-583.

  • Sterling S.M. Ducharne A. & Polcher J. (2013) The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change 3 385-390.

  • Stevens G.C. (1989) The latitudinal gradient in geographic range - how so many species coexist in the tropics. American Naturalist 133 240-256.

  • Storch D. (2000) Rapoport effect and speciation/extinction rates in the tropics. Trends in Ecology and Evolution 15 514.

  • Stutchbury B.J.M. & Morton E.S. (2001) Behavioral ecology of tropical birds. London: Academic Press.

  • Trivino M. Cabeza M. Thuiller W. Hickler T. & Araujo M.B. (2013) Risk assessment for Iberian birds under global change. Biological Conservation 168 192-200.

  • Vickery J.A. Ewing S.R. Smith K.W. Pain D.J. Bairlein F. Škorpilová J. et al. (2014) The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156 1-22.

  • Webb T.J. & Gaston K.J. (2003) On the heritability of geographic range sizes. American Naturalist 161 553-566.

  • Wesolowski T. (2005) Virtual conservation: How the European Union is turning a blind eye to its vanishing primeval forests. Conservation Biology 19 1349-1358.

  • Wilcove D.S. Giam X. Edwards D.P. Fisher B. & Koh L.P. (2014) Navjot’s nightmare revisited: logging agriculture and biodiversity in Southeast Asia. Trends in Ecology and Evolution 28 531-540.

  • Zwarts L. Bijlsma R.G. Van der Kamp J. & Wymenga E. (2009) Living on the Edge: wetlands and birds in a changing Sahel. Zeist: KNNV Publishing.

Search
Journal information
Impact Factor


CiteScore 2018: 0.84

Source Normalized Impact per Paper (SNIP) 2018: 0.365

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 270 72 6
PDF Downloads 157 65 8