Mechanistic and Correlative Models of Ecological Niches

Open access


The suite of factors that drives where and under what conditions a species occurs has become the focus of intense research interest. Three general categories of methods have emerged by which researchers address questions in this area: mechanistic models of species’ requirements in terms of environmental conditions that are based on first principles of biophysics and physiology, correlational models based on environmental associations derived from analyses of geographic occurrences of species, and process-based simulations that estimate occupied distributional areas and associated environments from assumptions about niche dimensions and dispersal abilities. We review strengths and weaknesses of these sets of approaches, and identify significant advantages and disadvantages of each. Rather than identifying one or the other as ‘better,’ we suggest that researchers take great care to use the method best-suited to each specific research question, and be conscious of the weaknesses of any method, such that inappropriate interpretations are avoided.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anderson R.P. Lew D. & Peterson A.T. (2003) Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecological Modelling 162 211-232.

  • Anderson R.P. & Raza A. (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: Preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography 37 1378-1393.

  • Araújo M.B. & Peterson A.T. (2012) Uses and misuses of bioclimatic envelope modelling. Ecology 93 1527-1539.

  • Araújo M.B. & Rozenfeld A. (2014) The geographic scaling of biotic interactions. Ecography 37 406-415.

  • Barve N. Barve V. Jimenez-Valverde A. Lira-Noriega A. Maher S.P. Peterson A.T. Soberón J. & Villalobos F. (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling 222 1810-1819.

  • Barve N. Martin C.E. & Peterson A.T. (2014) Role of physiological optima in shaping the geographic distribution of Spanish moss. Global Ecology and Biogeography 23 633-645.

  • Bertness M.D. & Callaway R. (1994) Positive interactions in communities. Trends in Ecology and Evolution 9 191-193.

  • Birch L.C. (1953) Experimental background to the study of the distribution and abundance of insects: I. The influence of temperature moisture and food on the innate capacity for increase of three grain beetles. Ecology 34 698-711.

  • Boria R.A. Olson L.E. Goodman S.M. & Anderson R.P. (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecological Modelling 275 73-77.

  • Bruno J.F. Stachowicz J.J. & Bertness M.D. (2003) Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18 119-125.

  • Buckley L.B. Urban M.C. Angilletta M.J. Crozier L.G. Rissler L.J. & Sears M.W. (2010) Can mechanism inform species’ distribution models? Ecology Letters 13 1041-1054.

  • Bullock J.M. Edwards R.J. Carey P.D. & Rose R.J. (2000) Geographical separation of two Ulex species at three spatial scales: Does competition limit species’ ranges? Ecography 23 257-271.

  • Cabral J.S. & Schurr F.M. (2010) Estimating demographic models for the range dynamics of plant species. Global Ecology and Biogeography 19 85-97.

  • Chase J.M. & Leibold M.A. (2003) Ecological Niches: Linking Classical and Contemporary Approaches. University of Chicago Press Chicago.

  • Colwell R.K. & Rangel T.F. (2009) Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Sciences USA 106 19644-19650.

  • de Souza Muñoz M. de Giovanni R. de Siqueira M. Sutton T. Brewer P. Pereira R. Canhos D. & Canhos V. (2011) openModeller: A generic approach to species’ potential distribution modelling. GeoInformatica 15 111-135.

  • Dormann C.F. Schymanski S.J. Cabral J. Chuine I. Graham C. Hartig F. Kearney M. Morin X. Romermann C. Schroder B. & Singer A. (2012) Correlation and process in species distribution models: Bridging a dichotomy. Journal of Biogeography 39 2119-2131.

  • Drake J. M. (2015) Range bagging: A new method for ecological niche modelling from presence-only data. Journal of the Royal Society Interface 12 20150086.

  • Elith J. Graham C. Anderson R.P. Dudík M. Ferrier S. Guisan A. Hijmans R.J. Huettmann F. Leathwick J.R. Lehmann A. Li J. Lohmann L.G. Loisell B.A. Manion G. Moritz C. Nakamura M. Nakazawa Y. Overton J. Peterson A.T. Phillips S.J. Richardson K. Scachetti-Pereira R. Schapire E. Soberón J. Williams S. Wisz M.S. & Zimmerman N.E. (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29 129-151.

  • Franklin J. (2010) Mapping Species Distributions: Spatial Inference and Prediction. Cambridge University Press Cambridge.

  • Godsoe W. (2010) I can’t define the niche but I know it when I see it: A formal link between statistical theory and the ecological niche. Oikos 119 53-60.

  • Grinnell J. (1914) Barriers to distribution as regards birds and mammals. American Naturalist 48 248-254.

  • Grinnell J. (1917) Field tests of theories concerning distributional control. American Naturalist 51 115-128.

  • Grinnell J. (1924) Geography and evolution. Ecology 5 225-229.

  • Guisan A. Tingley R. Baumgartner J.B. Naujokaitis‐Lewis I. Sutcliffe P.R. Tulloch A.I. Regan T.J. Brotons L. McDonald‐Madden E. & Mantyka‐Pringle C. (2013) Predicting species distributions for conservation decisions. Ecology Letters 16 1424-1435.

  • Guisan A. & Zimmermann N. (2000) Predictive habitat distribution models in ecology. Ecological Modelling 135 147-186.

  • Higgins S.I. O’Hara R.B. Bykova O. Cramer M.D. Chuine I. Gerstner E.M. Hickler T. Morin X. Kearney M.R. Midgley G.F. & Scheiter S. (2012) A physiological analogy of the niche for projecting the potential distribution of plants. Journal of Biogeography 39 2132-2145.

  • Hijmans R.J. (2012) Cross-validation of species distribution models: Removing spatial sorting bias and calibration with a null model. Ecology 93 679-688.

  • Hijmans R.J. Phillips S. Leathwick J. & Elith J. (2012) dismo: Species Distribution Modeling; R Package Version 0.7-17.

  • Hutchinson G.E. (1957) Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology 22 415-427.

  • Hutchinson G.E. (1978) An Introduction to Population Ecology. Yale University Press New Haven.

  • Jackson S.T. & Overpeck J.T. (2000) Responses of plant populations and communities to environmental changes of the Late Quaternary. Paleobiology 26 194-220.

  • Kearney M. (2006) Habitat environment and niche: What are we modelling? Oikos 115 186-191.

  • Kearney M. & Porter W. (2009) Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters 12 334-350.

  • Kearney M. & Porter W.P. (2004) Mapping the fundamental niche: Physiology climate and the distribution of a nocturnal lizard. Ecology 85 3119-3131.

  • Kearney M.R. Isaac A.P. & Porter W.P. (2014a) microclim: Global estimates of hourly microclimate based on long-term monthly climate averages.

  • Kearney M. R. Shamakhy A. Tingley R. Karoly D.J. Hoffmann A.A. Briggs P.R. & Porter W.P. (2014b) Microclimate modelling at macro scales: A test of a general microclimate model integrated with gridded continental-scale soil and weather data. Methods in Ecology and Evolution 5 273-286.

  • Kearney M.R. Wintle B.A. & Porter W.P. (2010) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conservation Letters 3 203-213.

  • Kellermann V. Loeschcke V. Hoffmann A.A. Kristensen T.N. Fløjgaard C. David J.R. Svenning J.C. & Overgaard J. (2012) Phylogenetic constraints in key functional traits behind species’ climate niches: Patterns of dessication and cold resistance across 95 Drosophila species. Evolution 66 3377-3389.

  • Kissling W.D. Dormann C.F. Groeneveld J. Hickler T. Kühn I. McInerny G.J. Montoya J.M. Römermann C. Schiffers K. Schurr F.M. Singer A. Svenning J.C. Zimmermann N.E. & O’Hara R.B. (2012) Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography 39 2163-2178.

  • Kramer-Schadt S. Niedballa J. Pilgrim J.D. Schröder B. Lindenborn J. Reinfelder V. Stillfried M. Heckmann I. Scharf A.K. & Augeri D.M. (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Diversity and Distributions 19 1366-1379.

  • Leathwick J. R. & Austin M.P. (2001) Competitive interactions between tree species in New Zealand’s old-growth indigenous forests. Ecology 82 2560-2573.

  • Linhart Y.B. & Grant M.C. (1996) Evolutionary significance of local genetic differentiation in plants. Annual Review of Ecology and Systematics 27 237-277.

  • Lira-Noriega A. Soberón J. & Miller C.P. (2013) Process-based and correlative modeling of desert mistletoe distribution: A multiscalar approach. Ecosphere 4 art99.

  • Lobo J.M. Jiménez-Valverde A. & Hortal J. (2010) The uncertain nature of absences and their importance in species distribution modelling. Ecography 33 103-114.

  • Long R.A. Bowyer R.T. Porter W.P. Mathewson P. Monteith K.L. & Kie J.G. (2013) Behavior and nutritional condition buffer a large-bodied endotherm against direct and indirect effects of climate. Ecological Monographs 84 513-532.

  • Lutterschmidt W.I. & Hutchison V.H. (1997) The critical thermal maximum: History and critique. Canadian Journal of Zoology 75 1561-1574.

  • Marion G. McInerny G.J. Pagel J. Catterall S. Cook A.R. Hartig F. & O’Hara R.B. (2012) Parameter and uncertainty estimation for process‐oriented population and distribution models: Data statistics and the niche. Journal of Biogeography 39 2225-2239.

  • McInerny G.J. & Etienne R.S. (2012a) Ditch the niche - Is the niche a useful concept in ecology or species distribution modelling? Journal of Biogeography 39 2096-2102.

  • McInerny G.J. & Etienne R.S. (2012b) Pitch the niche - Taking responsibility for the concepts we use in ecology and species distribution modelling. Journal of Biogeography 39 2112-2118.

  • Natori Y. & Porter W.P. (2007) Model of Japanese serow (Capricornis crispus) energetics predicts distribution on Honshu Japan. Ecological Applications 17 1441-1459.

  • Owens H.L. Campbell L.P. Dornak L. Saupe E.E. Barve N. Soberón J. Ingenloff K. Lira-Noriega A. Hensz C.M. Myers C.E. & Peterson A.T. (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling 263 10-18.

  • Peterson A.T. & Holt R.D. (2003) Niche differentiation in Mexican birds: Using point occurrences to detect ecological innovation. Ecology Letters 6 774-782.

  • Peterson A.T. & Soberón J. (2012) Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza e Conservação 10 1-6.

  • Peterson A.T. Soberón J. Pearson R.G. Anderson R.P. Martínez- Meyer E. Nakamura M. & Araújo M.B. (2011) Ecological Niches and Geographic Distributions. Princeton University Press Princeton.

  • Phillips S.J. Anderson R.P. & Schapire R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling 190 231-259.

  • Porter W. & Mitchell J. (2006) Method and system for calculating the spatial-temporal effects of climate and other environmental conditions on animals. USA patent No. 7155377.

  • Porter W.P. Munger J.C. Stewart W.E. Budaraju S. & Jaeger J. (1994) Endotherm energetics: From a scalable individual-based model to ecological applications. Australian Journal of Zoology 42 125-162.

  • Porter W.P. Ostrowski S. & Williams J.B. (2010) Modeling animal landscapes. Physiological and Biochemical Zoology 83 705-712.

  • Rangel T.F. Diniz-Filho J.A. & Colwell R. (2007) Species-richness and evolutionary niche dynamics: A spatial pattern-oriented simulation experiment. American Naturalist 170 602-616.

  • Saupe E.E. Barve V. Myers C.E. Soberon J. Barve N. Hensz C.M. Peterson A.T. Owens H. & Lira-Noriega A. (2012) Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecological Modelling 237 11-22.

  • Sax D.F. Early R. & Bellemare J. (2013) Niche syndromes species extinction risks and management under climate change. Trends in Ecology & Evolution 28 517-523.

  • Schurr F.M. Pagel J. Cabral J.S. Groeneveld J. Bykova O. O’Hara R.B. Hartig F. Kissling W.D. Linder H.P. Midgley G.F. Schröder B. Singer A. & Zimmermann N.E. (2012) How to understand species’ niches and range dynamics: A demographic research agenda for biogeography. Journal of Biogeography 39 2146-2162.

  • Serra-Varela M. Grivet D. Vincenot L. Broennimann O. Gonzalo-Jiménez J. & Zimmermann N. (2015) Does phylogeographical structure relate to climatic niche divergence? A test using maritime pine (Pinus pinaster Ait.). Global Ecology and Biogeography 24 1302-1313.

  • Simon M.N. Ribeiro P.L. & Navas C.A. (2015) Upper thermal tolerance plasticity in tropical amphibian species from contrasting habitats: Implications for warming impact prediction. Journal of Thermal Biology 48 36-44.

  • Soberón J. & Peterson A. (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2 1-10.

  • Strubbe D. Jackson H. Groombridge J. & Matthysen E. (2015) Invasion success of a global avian invader is explained by withintaxon niche structure and association with humans in the native range. Diversity and Distributions 21 675-685.

  • Thessen A.E. & Patterson D.J. (2011) Data issues in the life sciences. ZooKeys 150 15-51.

  • Villalobos F. Lira-Noriega A. Soberón J. & Arita H.T. (2014) Co-diversity and co-distribution in phyllostomid bats: Evaluating the relative roles of climate and niche conservatism. Basic and Applied Ecology 15 85-91.

  • Wisz M.S. Pottier J. Kissling W.D. Pellissier L. Lenoir J. Damgaard C.F. Dormann C.F. Forchhammer M.C. Grytnes J.A. Guisan A. Heikkinen R.K. Høye T.T. Kühn I. Luoto M. Maiorano L. Nilsson M.C. Normand S. Öckinger E. Schmidt N.M. Termansen M. Timmermann A. Wardle D.A. Aastrup P. & Svenning J.C. (2013) The role of biotic interactions in shaping distributions and realised assemblages of species: Implications for species distribution modelling. Biological Reviews 88 15-30.

Journal information
Impact Factor

CiteScore 2018: 0.84

Source Normalized Impact per Paper (SNIP) 2018: 0.365

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1271 955 62
PDF Downloads 654 547 27