Antibiotics Resistance in Enterococcus Isolates From Poultry Waste

Krystyna Cybulska 1  and Teresa Krzyśko-Łupicka 2
  • 1 Department of Chemistry, Microbiology and Environmental Biotechnology, West Pomeranian University of Technology in Szczecin, ul. J. Słowackiego 17, 71-434, Szczecin, Poland
  • 2 Institute of Environmental Engineering and Biotechnology, Faculty of Natural and Technical Science, University of Opole, ul. kard. B. Kominka 6a, 45-035, Opole, Poland


The aim of the study was to evaluate the drug resistance of Enterococcus faecalis and Enterococcus faecium isolated from different types of poultry waste. The study material consisted of feather samples (duck, turkey, chicken), sludge and centrifuge sediment, originating from three poultry farms. The study was conducted in two stages; isolation and identification of Enterococcus bacteria from the waste and evaluation of their drug resistance using Kirby-Bauer method. Contamination of the poultry waste with Enterococcus isolates included E. faecium species (79 %) and E. faecalis (21 %). The most contaminated were sludge and sediment from the centrifuge as well as chicken feathers, irrespective of the place and time of sampling. Tested isolates showed multiple resistance and similar reaction to all antibiotics used in the study and E. faecalis strain was more resistant. Enterococcus isolates showed the highest resistance to streptogramins, carbapenems, fluoroquinones, aminoglycosides and penicillins, and the lowest for nitrofurantions and phenicols.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Robbins KM, Suyemoto MM, Lyman RL, Martin MP, Barnes HJ, Borst LB. An outbreak and source investigation of enterococcal spondylitis in broilers caused by Enterococcus cecorum. Avian Diseases. 2012;56:768-73. DOI: 10.1637/10253-052412-Case.1.

  • [2] Arias CA, Murray BE. Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther. 2008;6:637-55. DOI: 10.1586/14787210.6.5.637.

  • [3] Hancock LE, Gilmore MS. Pathogenicity of Enterococci. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Rood JI, editors. Gram-Positive Pathogens, 2nd ed.; Washington ASM Press; 2006. p. 299-311. ISBN: 1555813437.

  • [4] Rehman MA, Yin X, Zaheer R, Goji N, Amoako KK, McAllister T, et al. Genotypes and phenotypes of enterococci isolated from broiler chickens. Front Sustain Food Syst. 2018;2:83. DOI: 10.3389/fsufs.2018.00083.

  • [5] Tankson JD, Thaxton JP, Vizzier-Thaxton Y. Bacteria in heart and lungs of young chicks. J Appl Microbiol. 2002;92:443-50. DOI: 10.1046/j.1365-2672.2002.01546.x.

  • [6] Fisher K, Philips C. The ecology, epidemiology and virulence Enterococcus. Microbiology. 2009;155:1749-57. DOI: 10.1099/mic.0.026385-0.

  • [7] Kaszanyizky EJ, Tenk M, Ghidan A, Fehervari GY, Papp M. Antimicrobial susceptibility of enterococci strains isolated from slaughter animals on the data of Hungary resistance monitoring system from 2001 to 2004. Int J Food Microbiol. 2007;115:119-23. DOI: 10.1016/j.ijfoodmicro.2006.10.004.

  • [8] Debnam AL, Jackson CR, Avellaneda GE, Barrett JB. Hofacre CL. Effect of growth promotant usage on enterococci species on a poultry farm. Avian Diseases. 2005;49:361-5. DOI: 10.1637/7328-011405R.1.

  • [9] Caron WP, Mousa SA. Prevention strategies for antimicrobial resistance: a systematic review of the literature. Infect Drug Resist. 2010;3:25-33. DOI: 10.2147/idr.s10018.

  • [10] Brown DFJ, Hope R, Livermore DM, Brick G, Broughton K, George RC. Non susceptibility trends among enterococci and nonpneumococcal streptococci from bacteraemias in the UK and Ireland, 2001-06. J Antimicrob Chemother. 2008;62:41-54. DOI: 10.1093/jac/dkn354.

  • [11] Singer RS, Williams-Nguyen J. Human health impacts of antibiotic use in agriculture: A push for improved causal inference. Curr Opin Microbiol. 2014;19:1-8. DOI: 10.1016/j.mib.2014.05.014.

  • [12] Arias CA, Murray BE. The rise of the Enterococcus: beyond vancomycin resistance. Nat Rev Microbiol. 2012;10(4):266-78. DOI: 10.1038/nrmicro2761.

  • [13] Velhner M, Petrović J, Stojanov I, Ratajac R, Stojanović D. Mehanizmi prenošenja rezistencije kod bakterija (Mechanisms of resistance transfer in bacteria). Archiv Vet Med. 2010;3(1):85-92. Available from:

  • [14] Burch D. Problems of antibiotic resistance in the United Kingdom. In Practice. 2005;27:37-43. DOI: 10.1136/inpract.27.1.37

  • [15] Adelowo OO, Ojo FA, Fagade O. Prevalence of multiple antibiotic resistance among bacterial isolates from selected poultry waste dumps in South western Nigeria. World J Microbiol Biotechnol. 2009;25:713-9. DOI: 10.1007/s11274-008-9940-y.

  • [16] Liu Y, Liu K, Lai J, Wu C, Shen J, Wang Y. Prevalence and antimicrobial resistance of Enterococcus species of food animal origin from Beijing and Shandong Province, China. J Appl Microbiol. 2013;114:555-63. DOI: 10.1111/jam.12054.

  • [17] Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol. 2013;4:135. DOI: 10.3389/fmicb.2013. 00135.

  • [18] Garrido A, Galvez MA, Pulido RP. Antimicrobial resistance in enterococci. J Infect Diseases Ther. 2014;2:150. DOI: 10.4172/2332-0877.1000150.

  • [19] Keen PL, Montforts MHMM. Antimicrobial Resistance in the Environment. Chicester: John Wiley Sons; 2012. ISBN: 9781118156216.

  • [20] Hollenbeck BL, Rice LB. Intrinsic and acquired resistance mechanism in enterococcus. Virulence. 2012;3(5):421-569. DOI: 10.4161/viru.21282.

  • [21] World Health Organization. Antimicrobial Resistance Global Report on surveillance. 2014. Available from:

  • [22] Graham JP, Evans SL, Price LB, Silbergeld EK. Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environ Res. 2009;109(6):682-9. DOI: 10.1016/j.envres.2009.05.005.

  • [23] Downes FC, Ito K. Compendium of Methods for Microbiological Examination of Foods. 4th ed. Washington: APHA. 2001. ISBN: 9780875531755.

  • [24] Slanetz LW, Barley CH. Numbers of enterococci in water, sewage and faeces determined by the membrane filter technique with an improved Medium. J Bact. 1957;74:591-6. Available from:

  • [25] Matuschek E, Brown DFJ, Kahlmeter J. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect. (CMI). 2014;20(4):0255-66. DOI: 10.1111/1469-0691.12373.

  • [26] Woźniak-Biel A, Bugla-Płoskońska G, Burdzy J, Korzekwa K, Ploch S, Wieliczko A. Antimicrobial resistance and biofilm formation in Enterococcus spp. isolated from humans and turkeys in Poland. Microb Drug Resist. 2019;25(2):277-86. DOI: 10.1089/mdr.2018.0221.

  • [27] Brash M, Slavic D. An unusual case of Enterococcus cecorum septicemia in a racing pigeon. AHL Newsletter. 2011;15(4):30. Available from:

  • [28] Olsen RH, Frantzen C, Christensen H, Bisgaard M. An investigation on first-week mortality in layers. Avian Diseases. 2012;56(1):51-7. DOI: 10.1637/9777-051011-Reg.1.

  • [29] Hammerum AM. Enterococci of animal origin and their significance for public health. Clin Microbiol Infect. 2012;18:619-23. DOI: 10.1111/j.1469-0691.2012.03829.x.

  • [30] Chajęcka-Wierzchowska W, Zadernowska A, Łaniewska-Trokenheim Ł. Virulence factors of Enterococcus ssp. presented in food. LWT-Food Sci Technol. 2017;75:670-5. DOI: 10.1016/j.lwt.2016.10.026.

  • [31] Gomes BC, Esteves CT, Palazzo ICV, Darini ALC, Felis GE, Sechi LA, et al. Prevalence and characterization of Enterococcus spp. isolated from Brazilian foods. Food Microbiol. 2008;25(5):668-75. DOI: 10.1016/

  • [32] Wardal E, Sadowy E, Hryniewicz W. Complex nature of enterococcal pheromone-responsive plasmids. Pol J Microbiol. 2010;59:79-87. Available from:

  • [33] Pillay S, Zishiri OT, Adeleke MA. Prevalence of virulence genes in Enterococcus species isolated from companion animals and livestock. Onderstepoort J Vet Res. 2018;85(1):a1583. DOI: 10.4102/ojvr.v85i1.1583.

  • [34] Marrow J, Whittington JK, Mitchell M, Hoyer LL, Maddox C. Prevalence and antibiotic-resistance characteristics of Enterococcus spp. isolated from free-living and captive raptors in Central Illinois. J Wildlife Diseases. 2009;45:302-13. Available from:

  • [35] Franz CM, Huch M, Abriouel H, Holzapfel W, Galvez A. Enterococci as probiotics and their implications in food safety. Int J Food Microbiol. 2011;151:125-40. DOI: 10.1016/j.ijfoodmicro.2011.08.014.

  • [36] Yurdakul NE, Erginkaya Z, Ünal E. Antibiotic resistance of enterococci, coagulase negative staphylococci and Staphylococcus aureus isolated from chicken meat. Czech J Food Sci. 2013;31:14-9. Available from:

  • [37] Agiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrung-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2011;18:268-81. DOI: 10.1111/j.1469-0691.2011.03570.x.

  • [38] Miller WR, Munita JM, Arias CA. Mechanism of antibiotic resistance in enterococci. Expert Rev Anti Infec Ther. 2014;12(10):1221-36. DOI: 10.1586/14787210.2014.956092.

  • [39] Kummerer K. Resistance in the environment. J Antimicrobial Chemother. 2004;54:311-20. DOI: 10.1093/jac/dkh325.

  • [40] Partridge SR, Kwong SM, Firth N, Jensen SO Wright GD. Antibiotic resistance in the environment. Clin Microbiol Rev. 2018;1;31(4):e00088-17. DOI: 10.1128/CMR.00088-17.

  • [41] Wright GD. Antibiotic resistance in the environment: a link to the clinic? Curr Opin Microbiol. 2010;13(5):589-94. DOI: 10.1016/j.mib.2010.08.005

  • [42] Van den Bogaard AE, Willems R, London N, Top J, Stobberingh EE. Antibiotic resistance of faecal enterococci in poultry, poultry farmers and poultry slaughterers. J Antimicrob Chemother. 2002;49:497-505. DOI: 10.1093/jac/49.3.497.

  • [43] Simeonov V. Environmental history of the twentieth century. An introductory didactic course. Chem Didact Ecol Metrol. 2019;24(1-2):7-21. DOI: 10.2478/cdem-2019-0001.


Journal + Issues