Lithium Biosorption by Arthrospira (Spirulina) Platensis Biomass

Inga Zinicovscaia 1 , 2 , Nikita Yushin 1 , Ana Pantelica 2 , Štefan Demčák 3 , Andreea Mitu 2 ,  and Andrei I. Apostol 2
  • 1 Joint Institute for Nuclear Research, , 6 Joliot-Curie Str., 1419890, Dubna
  • 2 Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, , 30 Reactorului Str. MG-6, Bucharest - Magurele, Romania
  • 3 Department of Environmental Management, Faculty of Management, University of Prešov, Konštantínova 16, 080 01, Prešov

Abstract

The biosorption of lithium from batch systems by Arthrospira (Spirulina) platensis biomass was studied. Adsorption capacity of the biosorbent was investigated as a function of contact time, initial metals concentration and pH values. Lithium content in biomass was determined using Proton Induced Gamma Emission technique. The ability of spirulina biomass for lithium biosorption showed a maximum at the pH = 11. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 1.75 mg/g, while the kinetic data were best described using the pseudo second-order kinetic model. The IR spectrum of the Li-loaded biomass revealed that lithium ions could be primarily bind to –OH, –COOH, –NH, –NH2, and –NH3 groups present on biosorbent surface. Arthrospira platensis biomass could be applied as environmentally friendly sorbent for lithium removal from wastewater.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Nishihama S, Onishi K, Yoshizuka K. Selective recovery process of lithium from seawater using integrated ion exchange methods. Solvent Extract Ion Exchange. 2011:29(3):421-31. DOI: 10.1080/07366299.2011.573435.

  • [2] Tsuruta T. Removal and recovery of lithium using various microorganisms. J Biosci Bioeng. 2005;100:562-566. DOI: 10.1263/jbb.100.562.

  • [3] Marcinčáková R, Kaduková J, Mražíkov A, Velgosová O, Luptáková A, Ubaldini S. Metal bioleaching from spent lithium-ion batteries using acidophilic bacterial strains. Inz Miner. 2016;17:117-20. Available from: https://pdfs.semanticscholar.org/0914/a95011769ec02eb2a2ad50f8a55a389c2814.pdf

  • [4] Wang L, Meng CG, Ma W. Study on Li+ uptake by lithium ion-sieve via the pH technique. Colloid Surf A. 2009;334:34-9. DOI: 10.1016/j.colsurfa.2008.09.050.

  • [5] Kurniawan A, Yamamoto T. Biosorption of lithium using biofilm matrix of natural microbial consortium. Microbiol Indonesia. 2015;9(3). DOI: 10.5454/mi.9.3.2.

  • [6] Aneja RK, Chaudhary G, Ahluwalia SS, Goyal D. Indian. Biosorption of Pb2+ and Zn2+ by non-living biomass of Spirulina sp. J Microbiol. 2010:50:438-42. DOI: 10.1007/s12088-011-0091-8.

  • [7] Rodrigues MS, Ferreira LS, de Carvalho JC, Lodi A, Finocchio E, Converti AJ. Metal biosorption onto dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris: multi-metal systems. Hazard Mater. 2012;30:217-218. DOI: 10.1016/j.jhazmat.2012.03.022.

  • [8] Solisio C, Lodi A, Soletto D, Converti A. Cadmium biosorption on Spirulina platensis biomass. Bioresour Technol. 2008:99:5933-7. DOI: 10.1016/j.biortech.2007.11.002.

  • [9] Finocchio E, Lodi A, Solisio C, Converti A. Chromium(VI) removal by methylated biomass of Spirulina platensis: The effect of methylation process. Chem Eng J. 2010:156:264-9. DOI: 10.1016/j.cej.2009.10.015.

  • [10] Zinicovscaia I, Yushin N, Shvetsova M, Frontasyeva M. Zinc removal from model solution and wastewater by Arthrospira (Spirulina) platensis biomass. Int J Phytoremediat. 2018;20:901-8. DOI: 10.1080/15226514.2018.1448358.

  • [11] Zinicovscaia I, Yushin N, Gundorina S, Demčák Š, Frontasyeva M, Kamanina I. Biosorption of nickel from model solutions and electroplating industrial effluent using cyanobacterium Arthrospira platensis. Desalin Water Treat. 2018;120:158-65. DOI: 10.5004/dwt.2018.22691.

  • [12] Cepoi L, Zinicovscaia I, Rudi L, Chiriac T, Miscu V, Djur S, et al. Growth and heavy metals accumulation by Spirulina platensis biomass from multicomponent copper containing synthetic effluents during repeated cultivation cycles. Ecol Eng. 2020;142:105637. DOI: 10.1016/j.ecoleng.2019.105637.

  • [13] Zinicovscaia I, Safonov A, Ostalkevich S, Gundorina S, Nekhoroshkov P, Grozdov D. Metal ions removal from different type of industrial effluents using Spirulina platensis biomass. Int J Phytoremediat. 2019;21(14):1442-8, DOI: 10.1080/15226514.2019.1633264

  • [14] Cepoi L, Zinicovscaia I, Chiriac T, Rudi L, Yushin N, Miscu V. Silver and gold ions recovery from batch systems using Spirulina platensis biomass. Ecol Chem Eng S. 2019;26(2):229-40. DOI: 10.1515/eces-2019-0029

  • [15] Gomez S, Garcia A, Landete-Castillejos T, Gallego L, Pantelica D, Pantelica A. Potential of the Bucharest 3MV Tandetron™ for IBA studies of deer antler mineralization. Nuclear Instruments Methods Phys Res Sect B: Beam Interactions Mater Atoms. 2016;371:413-8. DOI: 10.1016/j.nimb.2015.10.012.

  • [16] Park J, Sato H, Nishihama S, Yoshizuka K. Lithium recovery from geothermal water by combined adsorption methods. Solvent Extract Ion Exchange. 2012;30:398-404. DOI: 10.1080/07366299.2012.687165.

  • [17] Zinicovscaia I, Cepoi L, Chiriac T, Mitina T, Grozdov D, Yushin N, et al. Application of Arthrospira (Spirulina) platensis biomass for silver removal from aqueous solutions. Int J Phytoremediat. 2017;19:1053-8. DOI: 10.1080/15226514.2017.1319332.

  • [18] Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34:451-65. DOI: 10.1016/S0032-9592(98)00112-5.

  • [19] Robati D. Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J Nanostruct Chem. 2013;3:55. DOI: 10.1186/2193-8865-3-55.

  • [20] Ho YS, Huang CT, Huang HW. Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem. 2002;37:1421-30. DOI: 10.1016/S0032-9592(02)00036-5.

  • [21] Bhatnagar A, Minocha AK, Sillanpää M. Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochem Eng J. 2010;48:181-6. DOI: 10.1016/j.bej.2009.10.005.

  • [22] Sud D, Mahajan G, Kaur MP. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review. Bioresour Technol. 2008;99:6017-27. DOI: 10.1016/j.biortech.2007.11.064.

  • [23] Celekli A, Yavuzatmaca M, Bozkurt H. Kinetic and equilibrium studies on biosorption of reactive red 120 from aqueous solution on Spirogyra majuscula. Chem Eng J. 2009;152:139-45. DOI: 10.1016/j.cej.2009.04.016.

  • [24] Vilar VJ, Botelho CM, Pinheiro JP, Domingos RF, Boaventura RA. Copper removal by algal biomass: biosorbents characterization and equilibrium modelling. J Hazard Mater. 2009;163:1113-22. DOI: 10.1016/j.jhazmat.2008.07.083.

  • [25] Al-Rub FA, El-Naas MH, Ashour I, Al-Marzouqi M. Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem. 2006;41:457-64. DOI: 10.1016/j.procbio.2005.07.018.

  • [26] Govindaraju K, Basha SK, Kumar VG, Singaravelu G. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci. 2008;43:5115-22. DOI: 10.1007/s10853-008-2745-4.

  • [27] Yun YS, Volesky B. Modeling of lithium interference in cadmium biosorption. Environ Sci Technol. 2003;37:3601-8. DOI: 10.1021/es011454e.

  • [28] Belfiore C, Curia MV, Farías ME. Characterization of Rhodococcus sp. A5wh isolated from a high altitude Andean lake to unravel the survival strategy under lithium stress. Revista Argent Microbiologia. 2018;50(3):311-22. DOI: 10.1016/j.ram.2017.07.005.

OPEN ACCESS

Journal + Issues

Search