Recycling of Oil Fly Ash in the Adsorption of Dyes From Industrial Wastewater

Patrizia Primerano 1  and Maria Francesca Milazzo 1
  • 1 Dipartimento di Ingegneria, Università degli Studi di Messina, Contrada di Dio, Messina, 98166, Italy

Abstract

The use of oil fly ash after the recovery of heavy valuable metals was investigated. More specifically, its use, as an adsorbent of dyes from industrial wastewater, was evaluated. Methylene blue was used as a model compound to study the adsorption capacity of the proposed carbonaceous residue from metal recovery treatments. The effects of contact time, initial dye concentration, and absorbent dose were investigated. The maximum amount of dye was adsorbed after one hour. Moreover, 1-3 g of residues were necessary for the removal of 200-1000 mg dm–3 from 0.050 dm3 of contacted solution. The Langmuir isotherm model was in good agreement with the adsorption equilibrium data, indicating a maximum monolayer saturation capacity of approximately 40 mg/g at 25 °C. High abatement efficiencies (up to 99 %) were obtained, and the adsorbed dye was released almost immediately by re-contacting with water. The adsorption capacity was at least four times lower than that of commercially available active carbon. The double treatment of oil fly ash with deionised water and hydrochloric acid allows for the extraction of over 85 % of the vanadium, iron, and nickel content in the ash. However, the negligible or zero cost of solid residues, otherwise disposed in landfills, indicates their potential as a valid alternative. The use of oil fly ash for both recovery of heavy valuable metals and the subsequent removal of dyes from wastewater suggest a zero-waste process.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] EU Council. Official J European Union. 2008;L312/3. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0098&from=EN.

  • [2] Aslam Z, Shawabkeh RA, Hussein IA, Al-Baghli N, Eic M. Appl Surf Sci. 2015;327:107-15. DOI: 10.1016/j.apsusc.2014.11.152.

  • [3] Li X, Miao W, Lv Y, Wang Y, Gao C, Jiang D. Thermochim Acta. 2018;666:1-9. DOI: 10.1016/j.tca.2018.05.023.

  • [4] Salah N, Alshahrie A, Abdel-Wahaba M, Alharbic ND, Khan ZH. Diam Relat Mat. 2017;78:97-104. DOI: 10.1039/C7RA07155H.

  • [5] Silvestre-Albero J, Rodríguez-Reinoso F. Novel Carbon Adsorbents. 1st ed. Oviedo: Elsevier Store; 2011; 583-603. ISBN: 9780080977447

  • [6] Pandey B, Kinrade SD, Catalan LJ. J Environ Manage. 2012;101:59-67. DOI: 10.1016/j.jenvman.2012.01.029.

  • [7] Montalvo S, Cahn I, Borja R, Huiliñir C, Guerrero L. Bioresour Technol. 2017;244:416-22. DOI: 10.1016/j.biortech.2017.07.159.

  • [8] Eliche-Quesada D, Sandalio-Pérez JA, Martínez-Martínez S, Pérez-Villarejo L, Sánchez-Soto PJ. Ceram Int. 2017;44:4400-12. DOI: 10.1016/j.ceramint.2017.12.039.

  • [9] Al-Ghouti MA, Al-Degs YS, Ghrair A, Khoury H, Ziedan M. Chem Eng J. 2011;173:191-7. DOI: 10.1016/j.cej.2011.07.080.

  • [10] Akita S, Maeda T, Takeuchi H. J Chem Technol Biot. 1995;62:345-50. DOI: 10.1002/jctb.280620406.

  • [11] Primerano P, Catalfamo P, Di Pasquale S, Corigliano F. New methods for the production of pure vanadium pentoxide or a ferrovanadium concentrate from oil residues. In: Recycling and Reuse of Waste Materials. Dhir RK, Newlands MD, Halliday JL, editors. London: Thomas Telford Publishing; 2003; 287-295. ISBN: 0727732528.

  • [12] Vitolo S, Seggiani M, Filippi S, Brocchini C. Hydrometallurgy. 2000;57:141-9. DOI: 10.1016/S0304-386X(00)00099-2.

  • [13] Al-Degs YS, Ghrir A, Khoury H, Walker GM, Sunjuk M, Al-Ghouti MA. Fuel Process Technol. 2014;123:41-6. DOI: 10.1016/j.fuproc.2014.01.040.

  • [14] Alonso-Hernández CM, Bernal-Castillo J, Bolanos-Alvarez Y, Gómez-Batista M, Diaz-Asencio M. Fuel. 2011;90:2820-3. DOI: 10.1016/j.fuel.2011.03.014.

  • [15] Primerano P, Di Pasquale S, Mavilia L, Corigliano F. Atmos Environ. 1998;32:225-30. DOI: 10.1016/S1352-2310(97)00243-4.

  • [16] Hsieh YM, Tsai MS. Carbon. 2003;41:2317-24. DOI: 10.1016/S0008-6223(03)00283-5.

  • [17] Cavallaro G, Gianguzza A, Lazzara G, Milioto S, Piazzese D. Appl Clay Sci. 2013;72:132-7. DOI: 10.1016/j.clay.2012.12.001.

  • [18] Cataldo S, Cavallaro G, Gianguzza A, Lazzara G, Pettignano A, Piazzese D, et al. J. Environ Chem Eng. 2013;1:1252-60. DOI: 10.1016/j.jece.2013.09.012.

  • [19] Cataldo S, Gianguzza A, Merli M, Muratore N, Piazzese D, Liveri ML. Colloid Interface Sci. 2014;434:77-88. DOI: 10.1016/j.jcis.2014.07.042.

  • [20] Piazzese D, Cataldo S, Muratore N. Int J Electrochem Sci. 2015;10:7423-39. http://www.electrochemsci.org/papers/vol10/100907423.pdf.

  • [21] Adegoke KA, Bello OS. Water Res Ind. 2015;12:8-24. DOI: 10.1016/j.wri.2015.09.002.

  • [22] Ali I, Peng C, Khan Z, Sultan M, Naz I. Arab J Sci Eng. 2018;43(11):6245-59. DOI: 10.1007/s13369-018-3441-6.

  • [23] Ali I, Peng C, Liun D, Naz I. Green Process Synth. 2019;8(1):256-71. DOI: 10.1515/gps-2018-0078.

  • [24] Dai Y, Sun Q, Wang W, Lu L, Liu M, Li J, et al. Chemosphere. 2018;211:235-53. DOI: 10.1016/j.chemosphere.2018.06.179.

  • [25] Mo J, Yang Q, Zhang N, Zhang W, Zheng Y, Zhang Z. J Environ Manage. 2018;227:395-405. DOI: 10.1016/j.jenvman.2018.08.069.

  • [26] Swan NB, Zaini MAA. Ecol Chem Eng S. 2019;26(1):119-32. DOI: 10.1515/eces-2019-0009.

  • [27] Makuchowska-Fryc J. Ecol Chem Eng S. 2019;26(1):165-74. DOI: 10.1515/eces-2019-0012.

  • [28] Andini S, Cioffi R, Colangelo F, Montagnaro F, Santoro L. J Hazard Mater. 2008;157:599-604. DOI: 10.1016/j.jhazmat.2008.01.025

  • [29] Banerjee SS, Jayaram R., Joshi MV. Sep Sci Technol. 2003;38:1015-32. DOI: 10.1081/SS-120018121.

  • [30] Çalışkan Y, Harbeck S, Bektaş N. Environ Prog Sustain. 2018;38(S1):S185-95. DOI: 10.1002/ep.12969.

  • [31] Caramuscio P, De Stefano L, Seggiani M, Vitolo S, Narducci P. Waste Manage. 2003;23:345-51. DOI: 10.1016/S0956-053X(02)00118-6.

  • [32] Davini P. Carbon. 2003;41:1559-65. DOI: 10.1016/S0008-6223(03)00104-0.

  • [33] Janos P, Buchtova H, Ryznarova M. Water Res. 2003;37:4938-44. DOI: 10.1016/j.watres.2003.08.011.

  • [34] Rafatullah M, Sulaiman O, Hashim R, Ahmad A. J Hazard Mater. 2010;177:70-80. DOI: 10.1016/j.jhazmat.2009.12.047.

  • [35] Raman CD, Kanmani S. Environ Prog Sustain. 2018;38(S1):S366-76. DOI: 10.1002/ep.13063.

  • [36] Rathnayake M, Julnipitawong P, Tangtermsirikul S, Toochinda P. J Clean Prod. 2018;202:934-45. DOI: 10.1016/j.jclepro.2018.08.204.

  • [37] Avom J, Ketcha J, Noubactep C, Germain P. Carbon. 1997;35:365-9. DOI: 10.1016/S0008-6223(96)00158-3.

  • [38] Hameed BHD, Ahmad TM, Ahmad AL. J Hazard Mater. 2007;141:819-25. DOI: 10.1016/j.jhazmat.2006.07.049.

  • [39] Senthilkumaar S, Varadarajan PR, Porkodi K, Subbhuraam CV. J Colloid Interf Sci. 2005;284:78-82. DOI: 10.1016/j.jcis.2004.09.027.

  • [40] Wu XL, Shi Y, Zhong S, Lin H, Chen JR. Appl Surf Sci. 2016;378:80-6. DOI: 10.1016/j.apsusc.2016.03.226.

  • [41] Vakili M, Rafatullah M, Salamatinia B, Abdullah AZ, Ibrahim MH, Tan KB, et al. Carbohyd Polym. 2014;113:115-30. DOI: 10.1016/j.carbpol.2014.07.007.

  • [42] Ahmad A, Mohd-Setapar SH, Chuong CS, Khatoon A, Wani WA, Kumar R, et al. RSC Adv. 2015;39:30801-18. DOI: 10.1039/c4ra16959j.

  • [43] Ahmad T, Danish M, Rafatullah M, Ghazali A, Sulaiman O, Hashim R, et al. Environ Sci Pollut. Res. 2012;19:1464-84. DOI: 10.1007/s11356-011-0709-8.

  • [44] Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R. J Environ Sci Health C. 2011;29(3):177-222. DOI: 10.1080/10590501.2011.601847.

  • [45] Low LW, Teng TT, Rafatullah M, Morad N, Azahari B. Sep Sci Technol. 2013;48(11):1688-98. DOI: 10.1080/01496395.2012.756912.

  • [46] Cusack PB, Healy MG, Ryan PC, Burke IT, O’ Donoghue LMT, Ujaczki E, et al. J Clean Prod. 2018;179:217-24. DOI: 10.1016/j.jclepro.2018.01.092.

  • [47] Palazzi E, Currò F, Fabiano B. Proc Saf Environ. 2015;97:37-48. DOI: 10.1016/j.psep.2015.06.009

  • [48] Saidani M, Bernard B, Leroy Y, Cluzel F, Kendall A. J Clean Prod. 2019;207:542-59. DOI: 10.1016/j.jclepro.2018.10.014.

  • [49] Suresh Kumar P, Ejerssa WW, Wegener CC, Korving L, Dugulan AI, Temmink H, et al. Water Res. 2018;145:365-74. DOI: 10.1016/j.watres.2018.08.040.

  • [50] Jawad AH, Razuan R, Appaturi JN, Wilson LD. Surfaces Interfaces. 2019;16:76-84. DOI: 10.1016/j.surfin.2019.04.012.

  • [51] Labaran BA, Vohra MS. Desalin Water Treat. 2016;57(34):16034-52. DOI: 10.1080/19443994.2015.1074118.

  • [52] Ozbay N, Yargic AS. J Clean Prod. 2015;100:333-43. DOI: 10.1016/j.jclepro.2015.03.050.

  • [53] Chingono KE, Sanganyadob E, Bere E, Yalala B. J Environ Manage. 2018;224:182-90. DOI: 10.1016/j.jenvman.2018.07.042.

  • [54] El-Bindary AA, El-Sonbati AZ, Al-Sarawy AA, Mohamed KS, Farid MA. J Mol Liq. 2014;199:71-8. DOI: 10.1016/j.molliq.2014.08.010.

  • [55] Guendy HR. J Appl Sci Res. 2010;6(8):964-72. www.aensiweb.com/old/jasr/jasr/2010/964-972.pdf.

  • [56] Kiran I, Akar T, Ozcan AS, Ozcan A, Tunali S. Biochem Eng J. 2006;31:197-203. DOI: 10.1016/j.bej.2006.07.008.

  • [57] Langmuir I. J Am Chem Soc. 1918;40(9):1361-403. DOI: 10.1021/ja02242a004. https://pubs.acs.org/doi/10.1021/ja02242a004.

  • [58] Freundlich HMF. J Phys Chem. 1906;57:385-471. DOI: 10.1515/zpch-1907-5723. https://www.degruyter.com/view/j/zpch.1907.57.issue-1/zpch-1907-5723/zpch-1907-5723.xml.

  • [59] Yamada K, Haraguchi K, Gacho CC, Bussakorn PW, Pena ML. Removal of dyes from aqueous solution by sorption with coal fly ash. In: Proceedings of International Ash Utilization Symposium. Centre for Applied Energy Research. University of Kentucky; 2003:1-6. www.p2infohouse.org/ref/45/44848.pdf.

  • [60] Gupta VK, Mohan D, Sharma S, Sharma M. Sep Sci Technol. 2000;35:2097-113. DOI: 10.1081/SS-100102091.

  • [61] Primerano P, Campisi I, Di Pasquale S, Corigliano F. Atmos Environ. 1999;33:3551-8. DOI: 10.1016/S1352-2310(99)00111-9.

OPEN ACCESS

Journal + Issues

Search