Investigation of Filtration Capacity of Surface Wastewater Filters by Mathematical Modelling

Eglė Marčiulaitienė 1 , Laura Meškauskaitė 1 , Natalija Pozniak 2 ,  and Leonidas Sakalauskas 1
  • 1 Vilnius Gediminas Technical University, , Saulėtekio 11, 10221, Vilnius, Lithuania
  • 2 Vilniaus kolegija/University of Applied Sciences, , J. Jasinskio 15. LT-01111, Vilnius, Lithuania


As the urbanisation level increases, due to intensification of car traffic and increased areas of impermeable surfaces, pollution of surface wastewater and a negative impact on water bodies are increasing. Due to the increasing pollution of surface water bodies, the eutrophication process is taking place intensively. One of the technologies of surface wastewater treatment allowing reduction in the amounts of suspended solids (SS), heavy metals and other pollutants is surface wastewater filters. Filters with different fillers have been designed for the treatment of principal surface wastewater pollutants: suspended solids, heavy metals (zinc, cadmium, copper, lead), BOD5, total carbon and nitrogen. The Kriging method was adapted to test the efficiency of filters filled with construction waste and wood waste-derived biochar using distance matrices. The method developed makes it possible to model the characteristics of filters in relation to different fillers, using experimental results. The mathematical model is suitable for other filtrate characteristics, not only the ratio of fillers, but also the length of the filter life, its durability calculations, which allows optimizing filter cleaning efficiency up to 96.93 %.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Stec A, Słyś D. Rainwater potential use in dormitory building: drinking water savings and economic costs. Ecol Chem Eng A. 2017;24(1):43-64. DOI: 10.2428/ecea.2017.24(1)4.

  • [2] Managing Urban Runoff. Available from:

  • [3] Reddy KR, Xie T, Dastgheibi S. Removal of heavy metals from urban stormwater runoff using different filter materials. J Environ Chem Eng. 2014;2(1):282-92. DOI: 10.1016/j.jece.2013.12.020.

  • [4] Ghofrani Z, Sposito V, Faggian R. Designing a pond and evaluating its impact upon storm-water quality and flow: A case study in rural Australia. Ecol Chem Eng S. 2019;26(3):475-91. DOI: 10.1515/eces-2019-0036.

  • [5] Ambrose RF, Winfrey BK. Comparison of stormwater biofiltration systems in Southeast Australia and Southern California. WIREs Water. 2015;2(2):131-46. DOI: 10.1002/wat2.1064.

  • [6] Stormwater Program. Available from:

  • [7] Claytor RA, Schueler TR. Design of Stormwater Filtering Systems. The Center for Watershed Protection. Ellicott City, MD. 1996; Available from:

  • [8] Garzón-Zúñiga MA, Tomasini-Ortíz AC, Moeller-Chavez G, Hornelas-Uribe Y, Buelna G, Mijaylova-Nacheva P. Enhanced pathogen removal in on-site biofiltration systems over organic filtration materials. Water Practice Technol. 2008;3(2): wpt2008053. DOI: 10.2166/wpt.2008.053.

  • [9] Ilyas A, Muthanna TM. Assessment of upscaling potential of alternative adsorbent materials for highway stormwater treatment in cold climates. Environ Technol. 2017;38(6):705-17. DOI: 10.1080/09593330.2016.1209567.

  • [10] Lim HS, Lim W, Hu JY, Ziegler A, Ong SL. Comparison of filter media materials for heavy metal removal from urban stormwater runoff using biofiltration systems. J Environ Manage. 2015;147:24-33. DOI: 10.1016/j.jenvman.2014.04.042.

  • [11] Morgenroth E, Arvin E, Vanrolleghem P. The use of mathematical models in teaching wastewater treatment engineering, Water Sci Technol. 2002;45(6):229-33. DOI: 10.2166/wst.2002.0110.

  • [12] Novak M, Horvat P. Mathematical modelling and optimisation of a waste water treatment plant by combined oxygen electrode and biological waste water treatment model, Appl Mathematical Modell. 2012;36:3813-25. DOI: 10.1016/j.apm.2011.11.028.

  • [13] Bomba A, Safonyk A. Mathematical modeling of aerobic wastewater treatment in porous medium. Zesz Nauk Wyższej Szkoły Informatyki. 2013;12(1):21-9. Available from:

  • [14] Niec J, Spychala M, Zawadzki P. New approach to modelling of sand filter clogging by septic tank effluent, J Ecol Eng. 2016;17(2):97-107. DOI 10.12911/22998993/62296.

  • [15] Pozniak N, Sakalauskas L, Saltyte L. Kriging Model with Fractional Euclidean Distance Matrices. Informatica. 2019;30(2):367-90. Available from:

  • [16] Hu J, Chen G, Lo IHC. Selective removal of heavy metals from industrial wastewater using maghemite nanoparticles: Performance and mechanisms. J Environ Eng. 2006;132(7):709-15. DOI: 10.1061/(ASCE)0733-9372(2006)132:7(709).

  • [17] Zhu Y, Murali S, Stoller MD, Ganesh KJ, Cai W, Ferreira PJ, et al. Carbon-based supercapacitors produced by activation of graphene. Science. 2011;332(6037):1537-41. DOI: 10.1126/science.1200770.

  • [18] Beck DA, Johnson GR, Spolek GA. Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ Pollut. 2011;159:2111-8. DOI: 10.1016/j.envpol.2011.01.022.

  • [19] Hina K. Application of biochar technologies to wastewater treatment [PhD]. New Zealand: Massey University; 2013. Available from:

  • [20] Khare P, Dilshad U, Rout PK, Yadav V, Jain S. Plant refuses driven biochar: Application as metal adsorbent from acidic solutions. Arab J Chem. 2013;10:S3054-63. DOI: 10.1016/j.arabjc.2013.11.047.

  • [21] Regmi P, Moscoso JLG, Kumar S, Cao X, Mao J, Schafran G. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process. J Environ Manage. 2012;106:61-9. DOI: 10.1016/j.jenvman.2012.04.047.

  • [22] Gnecco I, Berretta C, Lanza LG, La Barbera P. Storm water pollution in the urban environment of Genoa, Italy. Atmosph Res. 2005;77:60-73. DOI: 10.1016/j.atmosres.2004.10.017.

  • [23] Schmidt HP. 55 uses of biochar. Ithaka J. 2012;1(1):286-9. Available from:

  • [24] ISO 3696:1987 - Water for analytical laboratory use. Specification and test methods (null water for analytical laboratory use - Specification and test methods). Available from:

  • [25] Jones DR. A taxonomy of global optimization methods based on response surfaces. J Global Optimization. 2001;21(4):345-83. DOI: 10.1023/A:1012771025575.

  • [26] Carpio R, Giordano RC, Secchi A. Enhanced surrogate assisted global optimization algorithm based on maximizing probability of improvement. Computer Aided Chem Eng. 2017;40:2065-70. DOI: 10.1016/B978-0-444-63965-3.50346-9.

  • [27] Sakalauskas L. Locally Homogeneous and isotropic Gaussian fields in Kriging. Informatica. 2013;24(2):253-74. Available from:

  • [28] Pozniak N, Sakalauskas L. Fractional Euclidean distance matrices extrapolator for scattered data. JMD. 2017;2(47):56-61. DOI: 10.21277/jmd.v47i2.156.


Journal + Issues