Cost-Effective Remediation Using Microscale Zvi: Comparison of Commercially Available Products

Alena Pavelková 1 , Vojtěch Stejskal 1 , 2 , Ondřejka Vološčuková 1 , and Jaroslav Nosek 1
  • 1 Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec
  • 2 , Photon Water Technology s.r.o., Hodkovická 109, 463 12, Liberec


Zero-valent iron is very effective in the treatment of groundwater contaminated with chlorinated hydrocarbons and solvents broadly used in industrial production. In terms of its sustainability and cost, a legitimate effort has been devoted to the optimization of the remediation process, which can be demanding and expensive. In this study, the application potential and fundamental properties of several commercial micro-sized zero-valent iron (μZVI) were investigated. Although the manufacturers report the basic parameters of μZVI, it has been shown that the actual reactivity of apparently similar products varies notably. This work was focused on monitoring of frequently occurring contaminants. The actual contaminated water from the Pisecna locality -former landfill of industrial waste, with high levels of chlorinated ethenes and ethanes (PCE, TCE, cis-1,2-DCE and 1,2-DCA) was used for the experiment. The degree of dechlorination reached over 85 % 32 days after the application of μZVI in several samples and a far higher reaction rate for smaller particles was observed. Also, the amount of cis-1,2-DCE, which is characterized by slow decomposition, decreased by more than 95 % over the course of the experiment. Smaller particles showed a much longer sedimentation rate and gradual fractionation was also observed. Monitoring of ORP and pH also suggested that the smaller particles possessed a reduction capacity that was sufficiently high even at the end of the experiment. Laboratory tests with apparently similar μZVI samples indicated considerable differences in their reaction rate and efficiency.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol. 1994;28(12):2045-53. DOI: 10.1021/es00061a012.

  • [2] Cantrell KJ, Kaplan DI, Wietsma TW. Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater. 1995;42(2):201-12. DOI: 10.1016/0304-3894(95)00016-N.

  • [3] Wing MR. Apparent first-order kinetics in the transformation of 1,1,1-trichloroethane in groundwater following a transient release. Chemosphere. 1997;34(4):771-81. DOI: 10.1016/S0045-6535(97)00004-0.

  • [4] Cook SM. Assessing the use and application of zero-valent iron nanoparticle technology for remediation at contaminated sites. 2009:39. Available from:

  • [5] Xiong Z, Kaback D, Bennett PJ. A case study of using zero-valent iron nanoparticles for groundwater remediation. AGU Fall Meeting Abstracts. 2011:H53B-1426. Available from:

  • [6] Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, et al. Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res. 2012;19(2):550-8. DOI: 10.1007/s11356-011-0576-3.

  • [7] Fu F, Dionysiou DD, Liu H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J Hazard Mater. 2014;267:194-205. DOI: 10.1016/j.jhazmat.2013.12.062.

  • [8] Phenrat T, Lowry GV, Babakhani P. Nanoscale zerovalent iron (NZVI) for environmental decontamination: A brief history of 20 years of research and field-scale application. In: Phenrat T, Lowry GV, editors. Nanoscale Zerovalent Iron Particles for Environmental Restoration: From Fundamental Science to Field Scale Engineering Applications. Cham: Springer International Publishing; 2019:1-43. DOI: 10.1007/978-3-319-95340-3_1.

  • [9] Chen X, Ji D, Wang X, Zang L. Review on nano zerovalent iron (nZVI): From modification to environmental applications. IOP Conf Series: Earth and Environ Sci. 2017;51:012004. DOI: 10.1088/1742-6596/51/1/012004.

  • [10] Macé C, Desrocher S, Gheorghiu F, Kane A, Pupeza M, Cernik M, et al. Nanotechnology and groundwater remediation: A step forward in technology understanding. Remediation. 2006;16(2):23-33. DOI: 10.1002/rem.20079.

  • [11] Tobiszewski M, Namieśnik J. Abiotic degradation of chlorinated ethanes and ethenes in water. Environ Sci Pollut Res Int. 2012;19(6):1994-2006. DOI: 10.1007/s11356-012-0764-9.

  • [12] Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol. 2005;39(5):1338-45. DOI: 10.1021/es049195r.

  • [13] Hunkeler D, Abe Y, Broholm MM, Jeannottat S, Westergaard C, Jacobsen CS, et al. Assessing chlorinated ethene degradation in a large scale contaminant plume by dual carbon-chlorine isotope analysis and quantitative PCR. J Contam Hydrol. 2011;119(1-4):69-79. DOI: 10.1016/j.jconhyd.2010.09.009.

  • [14] Lee W, Batchelor B. Abiotic reductive dechlorination of chlorinated ethylenes by soil. Chemosphere. 2004;55(5):705-13. DOI: 10.1016/j.chemosphere.2003.11.033.

  • [15] Fraraccio S, Strejcek M, Dolinova I, Macek T, Uhlik O. Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE). Sci Rep. 2017;7(1):8406. DOI: 10.1038/s41598-017-07760-1.

  • [16] Waclawek S, Nosek J, Cádrová L, Antos V, Cerník M. Use of various zero valent irons for degradation of chlorinated ethenes and ethanes. Ecol Chem Eng S. 2015;22(4):577-87. DOI: 10.1038/s41598-017-07760-1.

  • [17] Qian L, Chen Y, Ouyang D, Zhang W, Han L, Yan J, et al. Field demonstration of enhanced removal of chlorinated solvents in groundwater using biochar-supported nanoscale zero-valent iron. Sci Total Environ. 2020;698:134215. DOI: 10.1016/j.scitotenv.2019.134215.

  • [18] Zhou X, Chen H, Gao S-H, Han S, Tu R, Wei W, et al. Effects of particle size of zero-valent iron (ZVI) on peroxydisulfate-ZVI enhanced sludge dewaterability. Korean J Chem Eng. 2017;34(10):2672-7. DOI: 10.1007/s11814-017-0187-x.

  • [19] Crane RA, Scott TB. Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology. J Hazard Mater. 2012;211-212:112-25. DOI: 10.1016/j.jhazmat.2011.11.073.

  • [20] Comba S, Di Molfetta A, Sethi R. A Comparison between field applications of nano-, micro-, and millimetric zero-valent iron for the remediation of contaminated aquifers. Water Air Soil Pollut. 2011;215:595-607. DOI: 10.1007/s11270-010-0502-1.

  • [21] Henderson AD, Demond AH. Long-term performance of zero-valent iron permeable reactive barriers: A critical review. Environ Eng Sci. 2007;24(4):401-23. DOI: 10.1089/ees.2006.0071.

  • [22] Han Y, Yan W. Reductive dechlorination of trichloroethene by zero-valent iron nanoparticles: Reactivity enhancement through sulfidation treatment. Environ Sci Technol. 2016;50(23):12992-3001. DOI: 10.1021/acs.est.6b03997.

  • [23] Mukherjee R, Kumar R, Sinha A, Lama Y, Saha AK. A review on synthesis, characterization, and applications of nano zero valent iron (nZVI) for environmental remediation. Crit Rev Environ Sci Technol. 2016;46(5):443-66. DOI: 10.1080/10643389.2015.1103832.

  • [24] Noubactep C, Caré S, Crane R. Nanoscale metallic iron for environmental remediation: prospects and limitations. Water Air Soil Pollut. 2012;223(3):1363-82. DOI: 10.1007/s11270-011-0951-1.

  • [25] Przepiora A, Roberts J. Zero-valent iron for groundwater remediation - Lessons learned over 20 years of technology use. 2016:28. Available from:

  • [26] Gu C, Jia H, Li H, Teppen BJ, Boyd SA. Synthesis of highly reactive subnano-sized zero-valent iron using smectite clay templates. Environ Sci Technol. 2010;44(11):4258-63. DOI: 10.1021/es903801r.

  • [27] Duan R, Dong Y, Zhang Q. Characteristics of aggregate size distribution of nanoscale zero-valent iron in aqueous suspensions and its effect on transport process in porous media. Water. 2018;10:670. DOI: 10.3390/w10060670.

  • [28] Dolinová I, Czinnerová M, Dvořák L, Stejskal V, Ševců A, Černík M. Dynamics of organohalide-respiring bacteria and their genes following in-situ chemical oxidation of chlorinated ethenes and biostimulation. Chemosphere. 2016;157:276-85. DOI: 10.1016/j.chemosphere.2016.05.030.

  • [29] Shi Z, Nurmi JT, Tratnyek PG. Effects of nano zero-valent iron on oxidation-reduction potential. Environ Sci Technol. 2011;45(4):1586-92. DOI: 10.1021/es103185t.

  • [30] Černík M, Nosek J, Filip J, Hrabal J, Elliott DW, Zbořil R. Electric-field enhanced reactivity and migration of iron nanoparticles with implications for groundwater treatment technologies: Proof of concept. Water Res. 2019;154:361-9. DOI: 10.1016/j.watres.2019.01.058.

  • [31] Wang SY, Kuo YC, Huang YZ, Huang CW, Kao CM. Bioremediation of 1,2-dichloroethane contaminated groundwater: Microcosm and microbial diversity studies. Environ Pollut. 2015;203:97-106. DOI: 10.1016/j.envpol.2015.03.042.

  • [32] Villemur R, Lanthier M, Beaudet R, Lépine F. The Desulfitobacterium genus. FEMS Microbiol Rev. 2006;30(5):706-33. DOI: 10.1111/j.1574-6976.2006.00029.x.

  • [33] Lee T, Tokunaga T, Suyama A, Furukawa K. Efficient dechlorination of tetrachloroethylene in soil slurry by combined use of an anaerobic desdfitobacterium sp. strain Y-5 1 and zero-valent iron. J Biosci Bioeng. 2001;92(5):453-8. DOI: 10.1016/S1389-1723(01)80295-4.

  • [34] Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E. Impact of nanoscale zero valent iron on bacteria is growth phase dependent. Chemosphere. 2016;144:352-9. DOI: 10.1016/j.chemosphere.2015.09.025.

  • [35] Zabetakis KM, Niño de Guzmán GT, Torrents A, Yarwood S. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(8):794-805. DOI: 10.1080/10934529.2015.1019796.

  • [36] Vogel T, Criddle C, McCarty P. Transformation of halogenated aliphatic compounds. Environ Sci Technol. 1987;21:722-36. DOI: 10.1021/es00162a001.

  • [37] Maymó-Gatell X, Nijenhuis I, Zinder SH. Reductive dechlorination of cis-1,2-dichloroethene and vinyl chloride by ‘Dehalococcoides ethenogenes’. Environ Sci Technol. 2001;35(3):516-21. DOI: 10.1021/es001285i.

  • [38] Zhang W. Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res. 2003;5(3):323-32. DOI: 10.1023/A:1025520116015.

  • [39] Bianco C, Patiño Higuita JE, Tosco T, Tiraferri A, Sethi R. Controlled deposition of particles in porous media for effective aquifer nanoremediation. Sci Rep. 2017;7. DOI: 10.1038/s41598-017-13423-y.

  • [40] Chang Q. Chapter 3 - Sedimentation. In: Chang Q, editor. Colloid and Interface Chemistry for Water Quality Control. Academic Press. 2016:23-35. DOI: 10.1016/B978-0-12-809315-3.00003-7.


Journal + Issues