Application of Excess Activated Sludge as Waste Sorbent for Dyes Removal from their Aqueous Solutions

Open access

Abstract

Organic dyes are widely used in many industries (textiles, food, cosmetics, medicine and biology). These plants produce wastewater containing dyes. Even small amounts of dyes can cause a strong colour of wastewater. Therefore, it is very important to effectively remove residues of these pollutants from the wastewater, before discharging them into the environment. The sorption process is one of the methods used to remove dyes. However this method is often unprofitable economically in comparison with other dye removal processes, due to the high cost of commercial sorbents. Therefore, research is currently conducted in order to find waste materials that can be used as sorbents. The static sorption process of two dyes were carried out (Acid Red 18 and Acid Green 16) with the use of dried excess sludge. The activated sludge (excess) came from a municipal sewage treatment plant that purifies wastewater from carbon, nitrogen and phosphorus compounds. During the study the most favourable pH of the process and the contact time of the sorbent with the dyes were determined. It was observed that for both dyes the highest effectiveness of dye removal was obtained at pH = 2. The most favourable contact time was equal to 60 and 180 minutes for Acid Red 18 and Acid Green 16 respectively. In addition, in order to establish process parameters, a different models of sorption isotherm was examined. The studies showed that the sorption capacity (calculated based on Langmuir model) was much higher in the case of Acid Green 16 (qm = 434.8 mg/g) than for Acid Red 18 (qm = 109.9 mg/g). The experiments to evaluate the effect of pH, contact time on the process effectiveness and to determine the sorption isotherm were conducted at 293.15 K.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Mirzaei N Ghaffari MR Sharafi K Velayati A Hoseindoost G Rezaei S et al. J Environ Chem Eng. 2017;5:3151-60. DOI: 10.1016/j.jece.2017.06.008.

  • [2] Saharan VK Badve MP Pandit AB. Chem Eng J. 2011;178(0):100-7. DOI: 10.1016/j.cej.2011.10.018.

  • [3] Kuriechena SK Murugesan S Raja SP Maruthamuthu P. Chem Eng J. 2011;174(2-3):530-8. DOI:10.1016/j.cej.2011.09.024.

  • [4] Patel YN Patel MP. J Environ Chem Eng. 2013;1:1368-74. DOI: 10.1016/j.jece.2013.09.024.

  • [5] Shokoohi R Vatanpoor V Zarrabi M Vatani A. E-J Chem. 2010;7:65-72. https://www.hindawi.com/journals/jchem/2010/958073.

  • [6] Malakootian M Moridi A. Process Safety Environ Prot. 2017;111:138-47. DOI: 10.1016/j.psep.2017.06.008.

  • [7] Parsa JB Golmirzaei M Abbasi M. J Industrial Eng Chem. 2014;20(2):689-94. DOI: 10.1016/j.jiec.2013.05.034.

  • [8] Liang C-Z Sun S-P Li F-Y Ong Y-K Chung T-S. J Membr Sci. 2014;469:306-15. DOI: 10.1016/j.memsci.2014.06.057.

  • [9] Li HY Liu SY Zhao JH Feng N. Colloids Surfaces A: Physicochem Eng Aspects. 2016; 494:222-7. DOI: 10.1016/j.colsurfa.2016.01.048.

  • [10] Bessegato GG Cardoso JC Ferreira da Silva B Zanoni MVB. Appl Catal B: Environ. 2016;180:161-8. DOI: 10.1016/j.apcatb.2015.06.013.

  • [11] Quan X Luo D Wu J Li R Cheng W Ge S. J Environ Chem Eng. 2017;5:283-91. DOI: 10.1016/j.jece.2016.12.007.

  • [12] Yuan R Ramjaun SN Wang Z Liu J. Chem Eng J. 2012;192:171-78. DOI: 10.1016/j.cej.2012.03.080.

  • [13] Leite de Oliveira R Anderson MA Umbuzeiro GA Zocoloa GJ Zanoni MVB. J Hazard Mater. 2012;205-206:1-9. DOI:10.1016/j.jhazmat.2011.10.060.

  • [14] Quadrado RFN Fajardo AR. Carbohydr Polym. 2017;177:443-50. DOI: 10.1016/j.carbpol.2017.08.083.

  • [15] Song H Chen C Zhang H Huang J. J Environ Chem Eng. 2016;4:460-7. DOI: 10.1016/j.jece.2015.12.003.

  • [16] Khan ZUH Khan A Chen Y Khan AU Shah NS Muhammad N et al. J Alloys Compounds. 2017;725:869-76. DOI: 10.1016/j.jallcom.2017.07.222.

  • [17] Babu J Murthy ZVP. Separation Purif Technol. 2017;183:66-72. DOI: 10.1016/j.seppur.2017.04.002.

  • [18] Liu M Chen Q Lu K Huang W Lü Z Zhou C et al. Separation Purif Technol. 2017;173:135-43. DOI: 10.1016/j.seppur.2016.09.023.

  • [19] Zhang Y Huang G An C Xin X Liuc X Ramand M et al. Sci Total Environ. 2017; 595:723-32. DOI: 10.1016/j.scitotenv.2017.04.031.

  • [20] Liu J Chen F Li C Lu L Hu C Wei Y et al. J Clean Prod. 2019;208:552-62. DOI: 10.1016/j.jclepro.2018.10.136.

  • [21] Kausar A Iqbal M Javed A Aftab K Nazli Z-i-H Bhatti HN et al. J Mol Liq. 2018;256:395-407. DOI: 10.1016/j.molliq.2018.02.034.

  • [22] Tomczak E Blus M. Ecol Chem Eng S. 2016;23(1):175-85. DOI: 10.1515/eces-2016-0012.

  • [23] Vyavahare GD Jadhav P Jadhav J Patil R Aware C Patil D et al. J Clean Prod. 2019;207:296-305. DOI: 10.1016/j.jclepro.2018.09.193.

  • [24] Vyavahare GD Gurav RG Jadhav PP Patil RR Chetan B. Aware CB et al. Chemosphere. 2018;194:306-15. DOI: 10.1016/j.chemosphere.2017.11.180.

  • [25] Basar CA. J Hazard Mater B. 2006;135:232-41. DOI: 10.1016/j.jhazmat.2005.11.055.

  • [26] Allen SJ Gan Q Matthews R Johnson PA. Biores Technol. 2003;88:143-52. DOI: 10.1016/S0048-9697(03)00133-5.

  • [27] Crini G Badot P-M. Sorption Processes and Pollution. Conventional and Non-conventional Sorbents for Pollutant Removal from Wastewaters. Presses Universitaires de Franche-Comte. Universite de Franche-Comte. 2010. ISBN: 9782848673042.

  • [28] Temkin MI Pyzhev V. Acta Physicochim URSS. 1940;12(3):217-22.

  • [29] Hadi M Samarghandi MR McKay G. Chem Eng J. 2010;160:408-16. DOI: 10.1016/j.cej.2010.03.016.

  • [30] Dubinin MM Radushkevich LV. Dokl Akad Nauk SSSR. 1947;55:327-9.

  • [31] Dubinin MM. Chem Rev. 1960;60(2):235-41. https://www.app-one.com.cn/UpFile/20130618120102.pdf.

  • [32] Brunauer S Deming LS Deming WE Teller EJ. J Am Chem Soc. 1940;62(7):1723-32. https://pubs.acs.org/doi/pdf/10.1021/ja01864a025

  • [33] Amrhar O Nassali H Elyoubi MS. J Chem Pharm Res. 2015;7(9);892-903. http://www.jocpr.com/archive/jocpr-volume-7-issue-9-year-2015.html.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 17 17 17
PDF Downloads 14 14 14