Investigation of Biosensor Potential Component Stability Caused by Influence of External Condition

Aleksandra Kłos-Witkowska 1  and Vasyl Martsenyuk 1
  • 1 Department of Computer Science and Automatics, Faculty of Mechanical Engineering and Computer Science, University of Bielsko-Biala, 43-309, Bielsko-Biała, Poland

Abstract

The analysis of UV-VIS spectrum was used for testing changes through 36 days and the impact of external conditions (reduced temperature (R), microwave radiation (M) and normal conditions (NC) for comparisons) on the stability of: BSA and BSA-Fe2+ complexes after different treating procedure. The increase of BSA absorption with increasing concentration of Fe2+ was observed. Increased absorption of BSA, and BSA-Fe2+ with time, related probably to conformational changes present in the protein and changes in electrostatic reactions within the BSA-Fe2+ complexes. Examination of the impact of an external factor on stabilization of the protein and complexes showed a tendency to keep the stability under reduced temperature and a trend with accelerated protein and complex aging under microwave radiation. The observed tendencies to changes under the influence of external factors became more significant in time. These effects were most probably related to changes of the protein structure and time, while the observed trend of accelerating the changes was impacted by the applied external factors.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Petruk V, Kvaternyuk S, Yasynska V, Kozachuk A, Kotyra A, Romaniuk R, et al. The method of multispectral image processing of phytoplankton processing for environmental control of water pollution. Proc SPIE - Int Soc Optical Eng. Vol 9816, 2015, Article number 98161N. DOI: 10.1117/12.2229202.

  • [2] Martsenyuk, V, Warwas K, Augustynek K, Klos-Witkowska A, Karpinskyi V, Klymuk N, et al. ICCAS 2016: 16th IntConf Control, Automation and Systems. Korea. 2016:489-94. DOI: 10.1109/ICCAS.2016.7832365.

  • [3] Bernaś M, Płaczek B. Int J Distributed Sensor Networks. 2015;403242. DOI: 10.1155/2015/403242.

  • [4] Thevenot D, Toth K, Dust R, Wilson G. Pure Appl Chem. 1999; 2333-48. DOI: 10.1351/pac199971122333.

  • [5] Kłos-Witkowska A. Acta Phys Polon. 2018;133(1):101-4. DOI: 10.12693/APhysPolA.133.101.

  • [6] Fabisiak K, Kowalska M, Szybowicz M, Paprocki K, Popielarski P, Wrzyszczyński A, et al. Adv Eng Mat. 2013;15(10):935-40. DOI: 10.1002/adem.201200351.

  • [7] Martsenyuk V, Kłos-Witkowska A, Sverstiuk A. Electronic J Qualitative Theory Differential Equations. 2018;27:1-31. DOI: 10.14232/ejqtde.2018.1.27.

  • [8] Carpenter A, Paulsen I, Williams T. Genes. 2018;9:375. DOI: 10.3390/genes9080375.

  • [9] Rajpoot K. Biosensors J. 2017;6:145. DOI: 10.4172/2090-4967.1000145.

  • [10] Markets and Markets Company. Available from: https://www.marketsandmarkets.com/Market-Reports/biosensors-market-798.html?gclid=CjwKCAiAiarfBRASEiwAw1tYv37aDB7-up3sF3bRDT3ovYqEBrGB8Fwv8RoMwFsPe_x22cRaGvcgPhoCzvAQAvD_BwE.

  • [11] Kłos-Witkowska A. Polish J Environ Stud. 2015;1:19-25. DOI: 10.15244/pjoes/28352.

  • [12] Nowotny V, Barek J. Ecol. Chem Eng S. 2017;24(2):277-84. DOI: 10.1515/eces-2017-0019.

  • [13] Ron E. Curr Opin Biotechnol. 2007;18:252-6. DOI: 10.1016/j.copbio.2007.05.005.

  • [14] Kochana J, Adamski J, Parczewski A. Ecol. Chem Eng S. 2012;19(3):383-91. DOI: 10.2478/v10216-011-0028-5.

  • [15] Verma N, Bhardwaj A . Appl Biochem Biotechnol. 2015;175:3093-119. DOI: 10.1007/s12010-015-1489-2.

  • [16] Neethirajan S, Ragavan V, Weng X, Chand R. Biosensors. 2018;8:23. DOI: 10.3390/bios8010023.

  • [17] Adler C. Foods. 2014;3:491-510. DOI: 10.3390/foods3030491.

  • [18] Bunney J, Williamson S, Atkin D, Jeanneret M, Cozzolino D, Chapman J, et al. Current Res Nutrition Food Sci. 2017;5:183-95. DOI: 10.12944/CRNFSJ.5.3.02.

  • [19] Naik K, Srinivas D, Sasi B, Jakeer Basha S. Int J Pure App Biosci. 2017;5:1219-27. DOI: 10.18782/2320-7051.5546.

  • [20] Ahna J, Lima J, Parkb J, Ohc E, Sonc M, Hongb S, et al. Sensors Actuators B. 2015;210:9-16. DOI: 10.1016/j.snb.2014.12.060.

  • [21] Pietrantonio FM, Cannatà DE, Palla-Papavlu A, Fernández-Pradas J, Serra P, Varriale A, et al. Biosens Bioelectron. 2015;67:516-23: DOI: 10.1016/j.bios.2014.09.027.

  • [22] Burnworth M, Rowan S, Weder Ch. Chem Eur J. 2007;13:7828-36. DOI: 10.1002/chem.200700720.

  • [23] Kłos-Witkowska A. Acta Biochim Polon. 2016;63:215-21. DOI: 10.18388/abp.2015_1231.

  • [24] Sirivisoot S, Webster TJ. J Biosens Bioelectron. 2012;3:104. DOI: 10.4172/2155-6210.1000°104.

  • [25] Alvau M, Tartaggia S, Meneghello A, Casetta B, Calia G, Serra P, et al. Anal Chem. 2018;90:6012-9. DOI: 10.1021/acs.analchem.7b04357.

  • [26] Gruhl F, Rapp BE, Länge K. Adv Biochem Eng Biotechnol. 2013;133:115-48. DOI: 10.1007/10_2011_130.

  • [27] Luka G, Samiei E, Dehghani S, Johnson T, Najjaran H, Hoorfar M. Sensors. 2019;19(2):258. DOI: 10.3390/s19020258.

  • [28] Hu J, Wang S, Wang L, Li F, Pingguan-Murphy B, Lu T, et al. Biosens Bioelectron. 2014;54:585-97. DOI: 10.1016/j.bios.2013.10.075.

  • [29] Wasilewski T, Gębicki J, Kamysz W. Biosens Bioelectron. 2017;87:480-94. DOI: 10.1016/j.bios.2016.08.080.

  • [30] Hernández-Cancel G, Suazo-Dávila D, Medina-Guzmán J, Rosado-González M, Díaz-Vázquez L, Griebenow K. Analytica Chim Acta. 2015;854:129-39. DOI: 10.1016/j.aca.2014.11.008.

  • [31] Michnik A, Kłos A, Drzazga Z. J Thermal Analysis Calorimetry. 2003;77:269-77. DOI: 10.1023/B:JTAN.0000033212.93809.e1.

  • [32] Sarika C, Rekha K, Narasimha B, Narasimha Murthy B. 3 Biotech. 2015;5:911-24. DOI: 10.1007/s13205-015-0292-7.

  • [33] Ertürk G, Berillo D, Hedström M, Mattiasson B. Biotechnol Rep (Amst). 2015;3:65-72. DOI: 10.1016/j.btre.2014.06.006.

  • [34] Huang P, Li Z, Hu H, Cui D. J Nanomaterials. 2010:641545. DOI: 10.1155/2010/641545.

  • [35] Lin CH, Lee MJ, Lee W. Appl Phys Lett. 2016;109:093703. DOI: 10.1063/1.4962169.

  • [36] De Acha N, Elosúa C, Corres J, Arregui F. Sensors. 2019;19(3):599. DOI: 10.3390/s19030599.

  • [37] Zhou Y, Haiku Z, Fang Y, Yao C. Spectrochim Acta Part A: Molecular Biomolecular Spectrosc. 2013;106:197-202. DOI : 10.1016/j.saa.2012.12.092.

  • [38] Rudra S, Dasmandal S, Patra C, Kundu A, Mahapatra A. Spectrochim Acta Part A: Molecular Biomolecular Spectrosc. 2016;166:84-94. DOI: 10.1016/j.saa.2016.04.050.

  • [39] Zhang J, Chen L, Zeng B, Kang Q, Dai L. Spectrochim Acta Part A: Molecular Biomolecular Spectrosc. 2013;105:74-9. DOI : 10.1016/j.saa.2012.11.064.

  • [40] Kłos-Witkowska A, Akhmetov B, Zhumangalieva N, Karpinskyi V, Gancarczyk T. ICCAS 2016: 16th Int Conf Control, Automation Systems. Korea. 2016:976-80. DOI: 10.1109/ICCAS.2016.7832427.

  • [41] Sochacka J, Pacholczyk, Wójcik P. Trendy i rozwiązania technologiczne - odpowiedź na potrzeby współczesnego społeczeństwa. [Trends and technological solutions - a response to the needs of modern society] Tom 1 (81-101). Lublin: Wyd Naukowe TYGIEL; 2017. ISBN: 9788365598585.

  • [42] Cao H, Yi Y. Biometals. 2017;30:529-39. DOI: 10.1007/s10534-017-00222-1.

  • [43] Kaboudin B, Moradi K, Faghihi M, Mohammadi F. J Lumin. 2013;139:104-12. DOI: 10.1016/j.jlumin.2013.01.028.

  • [44] Tserkezidou C, Hatzidimitriou A, Psomas G. Polyhedron. 2016;117:184-92. DOI: 10.1016/j.poly.2016.05.044.

  • [45] Charan M, Suta M. Int J Pharmaceutical Sci Res. 2016;27:3781-86. DOI: 10.13040/IJPSR.0975-8232.7(9).3781-86.

  • [46] Attia K, Elabasawy N, Abolmagd E. Future J Pharmaceutical Sci. 2017;3:163-7. DOI. 10.1016/j.fjps.2017.06.001.

  • [47] Michnik A, Michalik K, Drzazga Z. J Photochem Photobiol B: Biology. 2008;90:170-8. DOI: 10.1016/j.jphotobiol.2007.12.007.

  • [48] Gaber M. J Biosci Bioeng. 2005;100:203-6. DOI: 10.1263/jbb.100.203.

  • [49] Damm M, Nusshold C, Cantillo D, Rechberger G, Sattler W, Kappe O. J Proteomics. 2012;75:5533-43. DOI: 10.1016/j.jprot.2012.07.043.

OPEN ACCESS

Journal + Issues

Search