Bacillus subtilis BS-2 and Peppermint Oil as Biocontrol Agents Against Botrytis cinerea

Open access

Abstract

The purpose of this study was to assess the activity of Bacillus subtilis BS-2 and peppermint oil against Botrytis cinerea. In this study parameters such as the age and the density of the bacterial culture and the incubation temperature were taken into consideration. Furthermore, the cellulolytic activity of the bacterium was determined. The effect of peppermint oil was evaluated at a concentration range of 0.5-4.0 %. The research was conducted with a dual culture plate method. The influence of B. subtilis BS-2 and peppermint oil on the growth of B. cinerea was evaluated based on the growth rate index. It was noted that the bacterial culture occurred at an initial density of OD560 = 1.0, cultivated at 30 °C for 48 hours demonstrated the strongest antagonistic effect (57.07 % inhibition). Furthermore, it was observed that the highest cellulolytic activity occurred on the bacteria incubated for 48 hours at 37 °C. The effect of mint oil, at the lowest concentration of 0.5-1.0 %, was much weaker on bacterial activity (1.1-12.1 % inhibition). The highest concentration (4.0 %) of mint oil caused the maximum inhibition (31.9 %) of the mycelial growth. B. subtilis BS-2 may be environmental-friendly alternatives for protecting plants against B. cinerea

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] El-Ghanam AA Farfour SA Ragab SS. Bio-suppression of strawberry fruit rot disease caused by Botrytis cinerea. J Plant Pathol Microbiol. 2015;S3:005. DOI: 10.4172/2157-7471.S3-005.

  • [2] Shternshis MV Belyaev AA Shpatova TV Lelyak AA. Influence of Bacillus spp. on strawberry gray mold causing agent and host plant resistance to disease. Contemp Prob Ecol. 2015;8:390-396. DOI: 10.1134/S1995425515030130.

  • [3] Ongouya Mouekouba LD Zhang ZZ Olajide EK Wang Ai-Jie Wang Ao-Xue. Biological control of Botrytis cinerea in tomato leaves. IPCBEE. 2013;60:64-68. DOI: 10.7763/IPCBEE.

  • [4] Chen H Xiao X Wang J Wu L Zheng Z Yu Z. Antagonistic effects of volatiles generated by Bacillus subtilis on spore germination and hyphal growth of the plant pathogen Botrytis cinerea. Biotechnol Lett. 2008;30:919-923. DOI: 10.1007/s10529-007-9626-9.

  • [5] Williamson B Tudzynski B Tudzynski P Kan JAL. Botrytis cinerea: The cause of grey mould disease Mol Plant Pathol. 2007;8:561-580. DOI: 10.1111/J.1364-3703.2007.00417.X.

  • [6] Zhang H Wang L Dong Y Jiang S Cao J Meng R. Postharvest biological control of gray mold decay of strawberry with Rhodotorula glutinis. Biol Control. 2007;40:287-292. DOI: 10.1016/j.ijfoodmicro.2008.05.018.

  • [7] Essghaier B Fardeau ML Cayol JL Hajlaoui MR Boudabous A Jijakli H et al. Biological control of grey mould in strawberry fruits by halophilic bacteria. J Appl Microbiol. 2009;106:833-846. DOI: 10.1111/j.1365-2672.2008.04053.x.

  • [8] Kowalska J. Effects of Trichoderma asperellum [T1] on Botrytis cinerea [PERS.: FR.] growth and yield of organic strawberry. Acta Sci Pol Hortorum Cultus. 2011;10:107-114. http://hortorumcultus.actapol.net/pub/10_4_107.pdf.

  • [9] Elad Y Stewart A. Microbial control of Botrytis spp. Chapter 13. In: Elad Y Williamson B Tudzynski P Delen N. editors. Botrytis: Biology Pathology and Control. Dordrecht: Springer; 2007: 223-241. ISBN 9781402026263. DOI: 10.1007/978-1-4020-2626-3.

  • [10] Hernández-León R Rojas-Solís D Contreras-Pérez M Orozco-Mosqueda MC Macías-Rodríguez LI Cruz HR et al. Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Control. 2015;81:83-92. DOI: 10.1016/j.biocontrol.2014.11.011.

  • [11] Jacometti MA Wratten SD Walter M. Review: Alternatives to synthetic fungicides for Botrytis cinerea management in vineyards. Aust J Grape Wine R. 2010:16:154-172. DOI: 10.1111/j.1755-0238.2009.0067.x.

  • [12] Ren JJ Shi GL Wang XQ Liu JG Wang YN. Identification and characterization of a novel Bacillus subtilis strain with potent antifungal activity of a flagellin-like protein. World J Microb Biot. 2013;29:2343-2352. DOI: 10.1007/s11274-013-1401-6.

  • [13] Zongzheng Y Xin L Zhong L Jinzhao P Jin Q Wenyan Y. Effect of Bacillus Subtilis SY1 on antifungal activity and plant growth. Int J Agric Biol Eng. 2009;2:55-61. DOI: 10.3965/j.issn.1934-6344.2009.04.055-061.

  • [14] Alina SO Constantiniscu F Petruta CC. Biodiversity of Bacillus subtilis group and beneficial traits of Bacillus species useful in plant protection. Rom Biotech Lett. 2015;20:10737-10750. http://www.rombio.eu/vol20nr5/01%20SICUIA%20OANA%20ALINA.pdf.

  • [15] Behdani M Pooyan M Abbasi S. Evaluation of antifungal activity of some medicinal plants essential oils against Botrytis cinerea causal agent of postharvest apple rot in vitro. Intl J Agri Crop Sci. 2012;4:1012-1016. https://www.researchgate.net/publication/292586844_Evaluation_of_antifungal_activity_of_some_medicinal_plants_essential_oils_against_Botrytis_cinerea_causal_agent_of_postharvest_apple_rot_in_vitro.

  • [16] Bouchra C Mohamed A Hassani Mina I Hmamouchi M. Antifungal activity of essential oils from several medicinal plants against four postharvest citrus pathogens. Phytopathol. Mediterr. 2003;42:251-256. http://www.fupress.net/index.php/pm/article/view/1711/1646.

  • [17] Şesan TE Enache E Iacomi BM Oprea M Oancea F Iacomi C. Antifungal activity of some plant extracts against Botrytis cinerea Pers. in the blackcurrant crop (Ribes nigrum L.). Acta Sci Pol Hortorum Cultus. 2015;14:29-43. http://www.acta.media.pl/pl/full/7/2015/000070201500014000010002900043.pdf.

  • [18] Toure Y Ongena M Jacques P Guiro A Thonar P. Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol. 2004;96:1151-1160. DOI: 10.1111/j.1365-2672.2004.02252.x.

  • [19] Nabrdalik M Moliszewska E Wierzba S. Importance of endophytic strains Pantoea agglomerans in the biological control of Rhizoctonia solani. Ecol Chem Eng S. 2018;25:331-342. DOI: 10.1515/eces-2018-0023.

  • [20] Ariffin H Abdullah N Umi Kalsom MS Shirai Y Hassan MA. Production and characterisation of cellulase by Bacillus pumilus EB3. Int J Eng Technol. 2006;3:47-53. https://pdfs.semanticscholar.org/2ddf/2067a5aba34de9ded53aff23439854e0040d.pdf.

  • [21] Janda K. Lipolityc activity and radial daily growth rate changes during incubation of Thermomyces lanugonosus on natural and synthetic fatty substrates. Rocz Panstw Zakl Hig. 2005;56:347-353. https://www.researchgate.net/publication/7168868_Lipolytic_activity_and_radial_daily_growth_rate_changes_during_incubation_of_thermomyces_lanuginosus_on_natural_and_synthetic_fatty_substrates.

  • [22] Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426-428. DOI: 10.1021/ac60147a030.

  • [23] Lowry OH Rosebrough NJ Farr AL Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;19:265-275. http://www.jbc.org/content/193/1/265.full.pdf.

  • [24] Todorova S Kozhuharova L. Characteristics and antimicrobial activity of Bacillus subtilis strains isolated from soil. World J Microb Biot. 2010;26:1207-1216. DOI: 10.1007/s11274-009-0290-1.

  • [25] Hang NTT Oh SO Kim GH Hur JS Koh YJ. Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. Plant Pathol J. 2005;21(1):59-63. https://pdfs.semanticscholar.org/6319/e3f619f0a5448add924ceb59d5f5a7d2dfcd.pdf.

  • [26] Wang JL Zong ZY Shang W Wei QiW Wang HK. Activity against Botrytis cinerea of Bacillus amyloliquefaciens IMAUB1034 isolated from naturally fermented congee. J Food Agric Environ. 2012;10:534-542.

  • [27] Wang S Tongle HU Yanling J IAO Jianjian WEI Keqiang CAO. Isolation and characterization of Bacillus subtilis EB-28 an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers. Front Agric China. 2009;3(3):247-252. DOI: 10.1007/s11703-009-0042-x.

  • [28] Ongena M Jacques P Touré Y Destain J Jabrane A Thonart P. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biot. 2005;69:29-38. DOI: 10.1007/s00253-005-1940-3.

  • [29] Ongena M Jourdan E Adam A Paquot M Brans A Joris B et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol. 2007;9:1084-1090. DOI: 10.1111/j.1462-2920.2006.01202.x.

  • [30] Ongena M Henry G Thonart P. The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. Chapter 5. In: Gisi U Chet I Gullino ML. editors. Recent Developments in Management of Plant Diseases Plant Pathology in the 21st Century 1. Springer Science+Business Media B.V. 2010: 59-69. ISBN 9789400731417. DOI: 10.1007/978-1-4020-8804-9.

  • [31] Silo-Suh LA Lethbridge BJ Raffel SJ He H Clardy J Handelsman J. Biological activities of two fungistatics produced by Bacillus cereus UW85. Appl Environ Microbiol. 1994;60:2023-2030. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC201597/pdf/aem00023-0329.pdf.

  • [32] Lin TP Chen CL Chang LK Tschen JS. M Liu ST. Functional and transcriptional analyses of a fengycin synthetase gene fenC from Bacillus subtilis. J Bacteriol. 1999;181:5060-5067. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC93996/pdf/jb005060.pdf.

  • [33] Liu W Mu W Zhu B Du Y Liu F. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agr Sci China. 2008;7:1104-1114. DOI: 10.1016/S1671-2927(08)60153-4.

  • [34] Mnif I Ghribi D. Potential of bacterial derived biopesticides in pest management. Crop Prot. 2015;77:52-64. DOI: 10.1016/j.cropro.2015.07.017.

  • [35] Grata K Nabrdalik M Latała A. Evaluation of proteolytic activity of Bacillus mycoides strains. Proc ECOpole. 2010;4:253-256. http://tchie.uni.opole.pl/PECO10_2/PECO_2010_2_p1.pdf.

  • [36] Nabrdalik M Grata K Latała A. Proteolytic activity of Bacillus cereus strains. Proc ECOpole. 2010;4;273-278. http://tchie.uni.opole.pl/PECO10_2/PECO_2010_2_p1.pdf.

  • [37] Lambertz C Garvey M Klinger J Heesel D Klose H Fischer R et al. Challenges and advances in the heterologous expression of cellulolytic enzymes: A review. Biotechnol Biofuels. 2014;7:135. DOI: 10.1186/s13068-014-0135-5.

  • [38] Immanuel G Dhanusha R Prema P Palavesam A. Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int J Environ Sci Technol. 2006;3(1):25-34. DOI: 10.1007/BF03325904.

  • [39] Kumar DP Anupama PD Singh RK Thenmozhi R Nagasathya A Thajuddin N et al. Evaluation of extracellular lytic enzymes from indigenous Bacillus isolates. J Microbiol Biotech Res. 2012;2(1):129-137. https://www.interesjournals.org/articles/evaluation-of-extracellular-lytic-enzymes-from-indigenous-bacillus-isolates.pdf.

  • [40] Sethi S Datta A Gupta BL Gupta S. Optimization of cellulase production from bacteria isolated from soil. ISRN Biotechnology. 2013; Article ID 985685. DOI: 10.5402/2013/985685.

  • [41] Kim YK Lee SC Cho YY Oh H J Ko YH. Isolation of cellulolytic Bacillus subtilis strains from agricultural environments. ISRN Microbiology. 2012; Article ID 650563. DOI: 10.5402/2012/650563.

  • [42] Fatema K Manchur MA. Isolation identification and cellulase production by Bacillus brevis from the Acacia forest soil. IJRAF. 2015;2:14-22. http://www.ijraf.org/pdf/v2-i9/3.pdf.

  • [43] Dias P Ramos K Padilha I Araujo D Santos SFM. Silva FLH. Optimization of cellulase production by Bacillus sp. isolated from sugarcane cultivated soil. Chem Eng Trans. 2014;38:277-282. DOI: 10.3303/CET1438047.

  • [44] Abbey JA Percival D Abbey L Asiedu SK Prithiviraj B Schilder A. Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) - prospects and challenges. Biocontrol Sci Technol. 2019;29(3):207-228. DOI: 10.1080/09583157.2018.1548574.

  • [45] Bakkali F Averbeck S Averbeck D Idaomar M. Biological effects of essential oils - A review. Food Chem Toxicol. 2008;46:446-475. DOI: 10.1016/j.fct.2007.09.106.

  • [46] Mohammadi P Lotfi N Naseri L Etebarian HR.. Antifungal activities of essential oils from some Iranian medicinal plants against various postharvest moulds. J Med Plants Res. 2013;7(23):1699-1708. DOI: 10.5897/JMPR11.1518.

  • [47] Felšöciová S Kačániová M Horská E Vukovic N Hleba L Petrová J et al. Antifungal activity of essential oils against selected terverticillate penicillia. Ann Agr Env Med. 2015;22(1):38-42. DOI: 10.5604/12321966.1141367.

  • [48] Lopez-Reyes JG Spadaro D Gullinoa ML Garibaldia A. Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivoi. Flavour Frag J. 2010;25:171-177. DOI: 10.1002/ffj.1989.

  • [49] Wójcik-Stopczyńska B Jakowienko P Wysocka G. The estimation of antifungal activity of essential oil and hydrosol obtained from wrinkled-leaf mint (Mentha crispa L.). Herba Pol. 2012;58:5-15. http://www.herbapolonica.pl/app/webroot/magazines-files/7494275-W%C3%B3jcik-Stopczy%C5%84ska%20et%20al.pdf.

  • [50] Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacor. 2014;4:1-10. DOI: 10.3389/fphar.2013.00177.

  • [51] Kamatou GPP Vermaak I Viljoen AM Lawrence BM. Menthol: A simple monoterpene with remarkable biological properties. Phytochemistry. 2013;96:15-25. DOI: 10.1016/j.phytochem.2013.08.005.

  • [52] Kizil S Hasimi N Tolan V Kilinc E. Mineral content essential oil components and biological activity of two mentha species (M. piperita L. M. spicata L.). Turk J Field Crops. 2010;2:148-153. https://pdfs.semanticscholar.org/b101/26563e4d0f5e8f168750f165dfaa56c3926f.pdf.

  • [53] Soković MD Vukojević J Marin PD Brkić DD Vajs V Griensven LJL. Chemical composition of essential oils of Thymus and Mentha species and their antifungal activities. Molecules. 2009;14:238-249. DOI: 10.3390/molecules14010238.

  • [54] Edris AE Farrag ES. Antifungal activity of peppermint and sweet basil essential oils and their major aroma constituents on some plant pathogenic fungi from the vapor phase. Nahrung/Food. 2003;7:117-121. DOI: 10.1002/food.200390021.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 69 69 35
PDF Downloads 51 51 35