The Possibility of Utilization of Sewage Sludge as a Filler in Production of the Lightweight Aggregate Concrete

Open access

Abstract

The article presents the laboratory investigations of the basic thermal and hygric parameters of standard lightweight aggregate-concrete and lightweight aggregate-concrete supplemented with municipal sewage sludge. Both types of concrete are based on light aggregates, commonly used in the Polish building market. In order to improve the hygric parameters of the material, such as water absorptivity, the admixture of water emulsion of reactive polisiloxanes was applied. Within the presented research, together with basic moisture parameters estimation, capillary rise process was monitored using Time Domain Reflectometry (TDR) modified sensors. Hygric parameters were supplemented with the estimation of thermal conductivity coefficient λ determined using stationary method. The analysis of thermal and hygric properties of concrete confirmed the applicability of lightweight aggregate-concrete with sewage sludge supplementation for further production.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Życzyńska A. Eksploat Niezawodn. 2013; 15(4):458-462. http://ein.org.pl/sites/default/files/2013-04-25.pdf.

  • [2] Ickiewicz I. Ecol Chem Eng S. 2013;20(4):805-816. DOI: 10.2478/eces-2013-0056.

  • [3] Directive 2006/32/EC of the European Parliament and of the Council of 5 April 2006 on energy end-use efficiency and energy services and repealing Council Directive 93/76/EEC.2006. https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:114:0064:0085:EN:PDF.

  • [4] Central Statistical Office. Energy Efficiency in the Years 1997-2007. Warszawa Poland: Central Statistical Office; 2009. https://stat.gov.pl/cps/rde/xbcr/gus/ee_energy_efficiency_in_Poland_1997-2007.pdf.

  • [5] Dylewski R Adamczyk J. Build Environ. 2011;46:2615-2623. DOI: 10.1016/j.buildenv.2011.06.023

  • [6] Aditya L Mahlia TMI Rismanchi B Ng HM Hasan MH Metselaar HSC et al. Renew Sust Energy Rev. 2017;73:1352-1365. DOI: 10.1016/j.rser.2017.02.034.

  • [7] Záleská M Pavlíková M Pokorný J Jankovský O Pavlík Z Černý R. Constr Build Mater. 2018; 180:1-11. DOI: 10.1016/j.conbuildmat.2018.05.250.

  • [8] Cetiner I Shea AD. Energy Buildings. 2018; 168:374-384. DOI:10.1016/j.enbuild.2018.03.019.

  • [9] Miskinis K Dikavicius V Buska A Banionis K. Appl Acoust. 2018;137:62-68. DOI: 10.1016/j.apacoust.2018.03.001.

  • [10] Yang L Xia J Shen Q. Util Policy. 2016;41:57-66. DOI: 10.1016/j.jup.2016.06.001.

  • [11] D’Agostino D Cuniberti B Bertoldi P. Energy Buildings. 2017;153:72-86. DOI: 10.1016/j.enbuild.2017.07.062.

  • [12] Wang C Shi J Chen Z Zha X. Procedia Eng. 2017;205:3056-3060. DOI: 10.1016/j.proeng.2017.10.273.

  • [13] Chenari B Carrilho JD Gameiro da Silva M. Renew Sust Energy Rev. 2016;59:1426-1447. DOI: 10.1016/j.rser.2016.01.074.

  • [14] Fernández-Agüera J Domínguez-Amarillo S Alonso C Martín-Consuegra F. Energy Buildings. 2019;199:102-114. DOI: 10.1016/j.enbuild.2019.06.052.

  • [15] Suchorab Z Barnat-Hunek D Sobczuk H.. Ecol Chem Eng S. 2011;18(1):111-120. https://drive.google.com/file/d/15RNlEZxhsjc4AD2Pm3w90ZtXim0wJJba/view.

  • [16] Nguyen LH Beaucour AL Ortola S Noumowé A. Constr Build Mater. 2017;151:720-731. DOI: 10.1016/j.conbuildmat.2017.06.087.

  • [17] Huo X Sun Y Hou J Wang P Kong X Zhang Q et al. Build Environ. 2019;106283. DOI: 10.1016/j.buildenv.2019.106283.

  • [18] Takada S. Energy Procedia. 2015;78:2772-2777. DOI: 10.1016/j.egypro.2015.11.623.

  • [19] Ababutain IM. Am J Appl Sci. 2013;10:159-163. DOI: 10.3844/ajassp.2013.159.163.

  • [20] Johansson P Bok G Ekstrand-Tobin A. Build Environ. 2013;65:178-184. DOI: 10.1016/j.buildenv.2013.04.004.

  • [21] Thelandersson S Isaksson T. Build Environ. 2013;65:18-25. DOI: 10.1016/j.buildenv.2013.03.016.

  • [22] Franus M Barnat-Hunek D Wdowin M. Environ Monit Assess. 2016;188:10. DOI: 10.1007/s10661-015-5010-8.

  • [23] Gonzalez-Corrochano B Alonso-Azcarate J Rodas M. J Environ Manage. 2009;90:2801-2812. DOI: 10.1016/j.jenvman.2009.03.009.

  • [24] Lee TC Lin KL Su XW Lin KK. Constr Build Mater. 2012;30:243-251. DOI: 10.1016/j.conbuildmat.2011.11.019.

  • [25] Huang SC Chang FC Lo SL Lee MY Wang CF Lin JD. J Hazard Mater. 2007;144:52-58. DOI: 10.1016/j.jhazmat.2006.09.094.

  • [26] Cheeseman CR Makinde A Bethanis S. Res Conserv Recycl. 2005;43:147-162. DOI: 10.1016/j.resconrec.2004.05.004.

  • [27] Montusiewicz A Lebiocka M Pawłowska M. Arch Environ Prot. 2008;34:49-61. http://ipis.pan.pl/dokumenty/archives/roczniki/2008/3-7.pdf.

  • [28] Commission of European Communities Council Directive 91/156/EEC on waste. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31991L0156&from=LV.

  • [29] Commission of European Communities Council Directive 91/271/EEC of March 1991 concerning urban waste-water treatment (amended by the 98/15 EC of 27 February 1998). https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al28008.

  • [30] Commission of European Communities Council Directive 99/31/EC of 26 April 1999 on the landfill waste. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=LEGISSUM%3Al21208.

  • [31] Commission of European Communities Council Directive 86/278/EEC of 4 July 1986 on the protection of the environment and in particular of the soil when sewage sludge is used in agriculture. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31986L0278&from=EN.

  • [32] Jordán MM Almendro-Candel MB Romero M Ma Rincón J. Appl Clay Sci. 2005;30:219-224. DOI: 10.1016/j.clay.2005.05.001.

  • [33] Kaszyńska M. Lekkie betony samozagęszczalne do konstrukcji mostowych (Self-compacting lightweight concretes for bridge constructions). Nowoczesne Budownictwo Inżynieryjne. 2009;2(23):68-72. http://www.nbi.com.pl/assets/NBI-pdf/2009/2_23_2009/pdf/19_lekkie_betony.pdf.

  • [34] Chiang KY Chou PH Hua CR Chien KL Cheeseman CR. J Hazard Mater. 2009;171:76-82. DOI: 10.1016/j.jhazmat.2009.05.144.

  • [35] Jo BW Park SK Park JB. Cement Concr Comp. 2007;29:128-135. DOI: 10.1016/j.cemconcomp.2006.09.004.

  • [36] Frattolillo A Giovinco G Mascolo MC Vitale A. Exp Therm Fluid Sci. 2005;30:27-35. DOI: 10.1016/j.expthermflusci.2004.12.006.

  • [37] Demirbo R Gül R. CemConc Res. 2003;33:723-727. DOI: 10.1016/S0008-8846(02)01032-3.

  • [38] Polish Standard PN-EN 206-1:2003/A2:2006P. Concrete. Specification performance production and conformity. Warszawa: Polish Committee for Standardization; 2006. http://sklep.pkn.pl/pn-en-206-1-2003-a2-2006p.html.

  • [39] Polish Standard PN-EN 1936:2010. Natural stone test methods. Determination of real density and apparent density and of total and open porosity. Warszawa Poland: Polish Committee for Standardization; 2010. http://sklep.pkn.pl/pn-en-1936-2010p.html.

  • [40] Vidana Gamage DN Biswas A Strachan IB. Soil Till Res. 2019;193:50-58. DOI: 10.1016/j.still.2019.05.012.

  • [41] Černý R. Measurement. 2009;42:329-336. DOI: 10.1016/j.measurement.2008.08.011.

  • [42] Skierucha W Wilczek A Alokhina O. Sens Actuator A-Phys. 2008;147:544-552. DOI: 10.1016/j.sna.2008.06.015.

  • [43] Brzyski P Barnat-Hunek D Suchorab Z Łagód G. Materials. 2017;10(5). DOI: 10.3390/ma10050510.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 52 52 4
PDF Downloads 36 36 8