The Influence of the Filtration Bed type in the Pool Water Treatment System on Washings Quality

Open access

Abstract

This paper presents the influence of the type of filtration beds, used in swimming pool water treatment systems, on the quality and the possibility of reuse of washings. The research covered 4 pool cycles with sand, sand and anthracite, glass and diatomaceous beds. The degree of contamination of washings was assessed on the basis of physical, chemical and bacteriological tests. The possibility of washings drainage into the natural environment was considered, and the results of the research were compared with the permissible values of pollution indicators for wastewater discharged to water or ground. A direct management of washings from the analysed filters proved impossible mainly due to the high content of TSS (total suspended solids) and free chlorine. Washings were subjected to sedimentation and then the supernatant was stirred intensively. As a result of these processes, the quality of washings was significantly improved. This allowed planning to supplement the pool water installations with systems for washings management.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Mays LW. A brief history of water filtration/sedimentation. Water Sci Technol Water Supply. 2013;13:735-742. DOI: 10.2166/ws.2013.102.

  • [2] Brandt MJ Johnson MK Elphinston AJ Ratnayaka DD. Twort’s Water Supply. 7th Ed. Butterworth-Heinemann: Elsevier Ltd; 2017. ISBN 9780081000250. DOI: 10.1016/C2012-0-06331-4.

  • [3] Evans G Dennis P Cousins M Campbell R. Use of recycled crushed glass as a filtration medium in municipal potable water treatment plants. Water Sci Technol Water Supply. 2002;2:9-16. DOI: 10.2166/ws.2002.0144.

  • [4] Cromphout J Rougge W. Cost-effective water treatment of polluted surface water by using direct filtration and granular activated carbon filtration. Water Sci Technol Water Supply. 2002;2:233-240. DOI: 10.2166/ws.2002.0028.

  • [5] Skoczko I Szatylowicz E. The analysis of physico-chemical properties of two unknown filter materials. J Ecol Eng. 2016;17:148-154. DOI: 10.12911/22998993/63480.

  • [6] Zaman S Begum A Rabbani KS Bari L. Low cost and sustainable surface water purification methods using Moringa seeds and scallop powder followed by bio-sand filtration. Water Sci Technol Water Supply. 2017;17:125-137. DOI: 10.2166/ws.2016.111.

  • [7] Shafiquzzaman M Al-Mahmud A AlSaleem S Haider H Shafiquzzaman M Al-Mahmud A et al. Application of a low cost ceramic filter for recycling sand filter backwash water. Water. 2018;10:150. DOI: 10.3390/w10020150.

  • [8] Guo D Wang H Fu P Huang Y Liu Y Lv W et al. Diatomite precoat filtration for wastewater treatment: Filtration performance and pollution mechanisms. Chem Eng Res Des. 2018;137:403-411. DOI: 10.1016/j.cherd.2018.06.036.

  • [9] Onur A Ng A Garnier G Batchelor W. Engineering cellulose fibre inorganic composites for depth filtration and adsorption. Sep Purif Technol. 2018;203:209-216. DOI: 10.1016/j.seppur.2018.04.038.

  • [10] Wasielewski S Rott E Minke R Steinmetz H Wasielewski S Rott E et al. Evaluation of different clinoptilolite zeolites as adsorbent for ammonium removal from highly concentrated synthetic wastewater. Water. 2018;10:584. DOI: 10.3390/w10050584.

  • [11] Fouad HA El-Hefny RM Mohamed MA. Reuse of spent filter backwash water. Int J Civ Eng Technol. 2016;7:176-187. http://www.iaeme.com/IJCIET/issues.asp?JType=IJCIET&VType=7&IType=4.

  • [12] Skolubovich Y Voytov E Skolubovich A Ilyina L. Cleaning and reusing backwash water of water treatment plants. IOP Conf Ser Earth Environ Sci. 2017;90:12035. DOI: 10.1088/1755-1315/90/1/012035.

  • [13] Skoczko I Piekutin J Ignatowicz K. Efficiency of manganese removal from water in selected filter beds. Desalin Water Treat. 2016;57:1611-1619. DOI: 10.1080/19443994.2015.1043487.

  • [14] Keuten MGA Peters MCFM Daanen HAM de Kreuk MK Rietveld LC van Dijk JC. Quantification of continual anthropogenic pollutants released in swimming pools. Water Res. 2014;53:259-270. DOI: 10.1016/j.watres.2014.01.027.

  • [15] Teo TLL Coleman HM Khan SJ. Chemical contaminants in swimming pools: Occurrence implications and control. Environ Int. 2015;76:16-31. DOI: 10.1016/j.envint.2014.11.012.

  • [16] Tardif R Rodriguez M Catto C Charest-Tardif G Simard S. Concentrations of disinfection by-products in swimming pool following modifications of the water treatment process: An exploratory study. J Environ Sci. 2017;58:163-172. DOI: 10.1016/j.jes.2017.05.021.

  • [17] Lempart A Kudlek E Dudziak M Szyguła A. The impact of the circulation system on the concentration level of micropollutants in the swimming pool water treatment system. Inżynieria Ekol. 2018;19:23-31. DOI: 10.12912/23920629/86051.

  • [18] Lempart A Kudlek E Dudziak M. Determination of micropollutants in water samples from swimming pool systems. Water. 2018;10:1083. DOI: 10.3390/w10081083.

  • [19] Reissmann FG Schulze E Albrecht V. Application of a combined UF/RO system for the reuse of filter backwash water from treated swimming pool water. Desalination. 2005;178:41-49. DOI: 10.1016/j.desal.2004.11.027.

  • [20] Wyczarska-Kokot J. Badania jakości popłuczyn ze stacji filtrów w obiekcie basenowym w aspekcie możliwości odprowadzania ich do wód lub do ziemi - studium przypadku (Studies of backwash water quality from a swimming pool filter plant in terms of their discharge to surface water bodies or into the ground - a case study). Ochr Środ. 2017;39:45-50. http://www.os.not.pl/docs/czasopismo/2017/2-2017/Wyczarska_2-2017.pdf.

  • [21] Wyczarska-Kokot J. The study of possibilities for reuse of washings from swimming pool circulation systems. Ecol Chem Eng S. 2016;23:447-459. DOI: 10.1515/eces-2016-0032.

  • [22] Dudziak M Łaskawiec E Wyczarska-Kokot J. Treatment of pool water installation washings in flocculation/ultrafiltration/integrated system. J Ecol Eng. 2017;18:96-103. DOI: 10.12911/22998993/74603.

  • [23] Łaskawiec E Madej M Dudziak M Wyczarska-Kokot J. The use of membrane techniques in swimming pool water treatment. J Ecol Eng. 2017;18(4):130-136. DOI: 10.12911/22998993/74282.

  • [24] American National Standard for Water Quality in Public Pools and Spas. https://standards.nsf.org/apps/group_public/download.php/17496/ANSI-APSP-112009-for-apsp-store.pdf.

  • [25] Filter Backwash Recycling Rule. Technical Guidance Manual. Office of Ground Water and Drinking Water (4606M). EPA 816-R-02-014. www.epa.gov/safewater 2002.

  • [26] Aufbereitung von Schwimm und Badebeckenwasser (Water treatment for swimming and bathing pools). DIN 19643 1-4:2012-11. Berlin: Beuth-Verlag; 2012. www.beuth.de/de/norm/din-19643-1/164174095.

  • [27] Łaskawiec E Dudziak M Wyczarska-Kokot J. Ocena skuteczności procesu koagulacji w oczyszczaniu popłuczyn z układu cyrkulacji wody basenowej (Evaluation of coagulation process effectiveness in purification of filter washings from swimming pool circulation system). Ochr Środ. 2018;40:57-60. http://www.os.not.pl/docs/czasopismo/2018/1-2018/Laskawiec_1-2018.pdf.

  • [28] Guida M Di Onofrio V Gallè F Gesuele R Valeriani F Liguori R et al. Pseudomonas aeruginosa in swimming pool water: Evidences and perspectives for a new control strategy. Int J Environ Res Public Health. 2016;13(9):919. DOI: 10.3390/ijerph13090919.

  • [29] Liguori G Di Onofrio V Gallè F Liguori R Nastro RA Guida M. Occurrence of Legionella spp. in thermal environments: Virulence factors and biofilm formation in isolates from a spa. Microchem J. 2014;112:109-112. DOI: 10.1016/j.microc.2013.09.023.

  • [30] Suppes LM Canales RA Gerba CP Reynolds KA. Cryptosporidium risk from swimming pool exposures. Int J Hyg Environ Health. 2016;219:915-919. DOI: 10.1016/j.ijheh.2016.07.001.

  • [31] Wyczarska-Kokot J Piechurski F. Application of nanosilver in swimming pool water treatment technology. Proceedings. 2017;2:175. DOI: 10.3390/ecws-2-04944.

  • [32] Dryden Aqua - Innovative water treatment technology https://www.drydenaqua.com.

  • [33] Ediz N Bentli I Tatar I. Improvement in filtration characteristics of diatomite by calcination. Int J Miner Process. 2010;94:129-134. DOI: 10.1016/j.minpro.2010.02.004.

  • [34] Giaccobi S Kromm FX Wargnier H Danis M. Filtration in materials selection and multi-materials design. Mater Des. 2010;31:1842-1847. DOI: 10.1016/j.matdes.2009.11.005.

  • [35] Rozporządzenie Ministra Środowiska z dnia 18 listopada 2014 r. w sprawie warunków jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi (Regulation of Environment Minister of 18 November 2014 on conditions to be met when discharging sewage to waters or to the soil). DzU 2014 poz. 1800. http://isap.sejm.gov.pl/DetailsServlet?id=WDU20140001800.

  • [36] Directive 2006/118/EC of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32006L0118.

  • [37] Directive 2008/105/EC of 16 December 2008 on environmental quality standards in the field of water policy. http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32008L0105.

  • [38] Polish Standard PN-EN ISO 6222:2004 Water quality - Quantification of microorganisms capable of growth - Determination of the total number of colonies by culture on the nutrient agar. http://sklep.pkn.pl/pn-en-iso-6222-2004p.htm.

  • [39] Łaskawiec E Dudziak M Wyczarska-Kokot J. Ultrafiltration for purification and treatment of water streams in swimming pool circuits. J Ecol Eng. 2018;19:38-44. DOI: 10.12911/22998993/85451.

  • [40] Korkosz A Janczarek M Aranowski R Rzechula J Hupka J. Efficiency of deep bed filtration in treatment of swimming pool water. Physicochem Probl Miner Process. 2010;44:103-113. http://www.minproc.pwr.wroc.pl/journal/pdf/2010/FPM%2044/KORKOSZ.pdf.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 34 34 7
PDF Downloads 28 28 8