Pilot Tests and Fouling Identification in the Ultrafiltration of Model Oily and Saline Wastewaters

Open access

Abstract

This paper evaluates ceramic membrane performance and fouling mechanisms in the ultrafiltration of model oil-in-water solutions with addition of NaCl. First, the work estimated the effect of main process parameters, i.e. transmembrane pressure, cross-flow velocity and NaCl content in the feed on oil rejection and permeate flux using 23 experimental design. The ultrafiltration experiments were carried out using pilot installation with commercial tubular ceramic 300 kDa membrane. Ultrafiltration data obtained using experimental design technique was used to determine the regression coefficients of polynomial equations. These equations give information on non-conjugated as well as conjugated effects of two operating parameters and one feed parameter on ceramic membrane performance in ultrafiltration process of model oil-in-water-NaCl solutions. Moreover, these equations can help to determine optimal conditions for ultrafiltration process from the point of view of membrane permeability and selectivity. Next, ultrafiltration results were analyzed using resistance-in-series model. It was found that the process is membrane resistance limited. It was also stated that, resistance caused by reversible fouling is greater than irreversible fouling resistance. Finally, pore blocking models based on modified Hermia’s equation were used to determine membrane fouling mechanism responsible for permeate flux decline with ultrafiltration time. In investigated system ceramic membrane fouling was caused by complete and intermediate pore blocking mechanisms.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Abadi SRH Sebzari MR Hemati M Rekabdar F Mohammadi T. Ceramic membrane performance in microfiltration of oily wastewater. Desalination. 2011;265:222-228. DOI: 10.1016/j.desal.2010.07.055.

  • [2] Ebrahimi M Willershausen D Ashaghi KS Engel L Placido L Mund P et al. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination. 2010;250(3):991-996. DOI: 10.1016/j.desal.2009.09.088.

  • [3] Jamaly S Giwa A Hasan SW. Recent improvements in oily wastewater treatment: Progress challenges and future future oportunities. J Environ Sci. 2015;(37):15-30. DOI: 10.1016/j.jes.2015.04.011.

  • [4] Ebenezer TI Chen GZ. Produced water treatment technologies. Int J Low-Carbon Technol. 2014;9(3):157-177. DOI: 10.1093/ijlct/cts049

  • [5] Yu L Han M He F. A review of treating oily wastewater. Arab J Chem. 2017;10:1913-1922. DOI: 10.1016/j.arabjc.2013.07.020.

  • [6] Weschenfelder SE Fonseca MJC Borges CP Campos JC. Application of ceramic membranes for water management in offshore oil production platforms: Process design and economics. Sep Purif Technol. 2016;171:214:220. DOI: 10.1016/j.seppur.2016.07.040.

  • [7] Bodzek M. Inorganic micropollutants removal by means of membrane processes - state of the art. Ecol Chem Eng S. 2016;23(2):285-295. DOI: 10.2478/eces-2013-0044.

  • [8] Brunetti A Macedonio F Barbieri G Drioli E. Membrane engineering for environmental protection and sustainable industrial growth: Options for water and gas treatment. Environ Eng Res. 2015;20(4):307-328. DOI: 10.4491/eer.2015.074.

  • [9] Lin B Lin CY Jong TC. Investigation of strategies to improve the recycling effectiveness of waste oil from fishing vessels. Marine Policy. 2007;31:415-420. DOI: 10.1016/j.marpol.2007.01.004.

  • [10] Tanudjaja HJ Chejase ChA Tarabara VV Fane AG Chew JW. Membrane-based separation of oily wastewater: A practical perspective. Water Res. 2019;156:347-365. DOI: 10.1016/j.watres.2019.03.021.

  • [11] Abdelrasoul A Doan H Lohi A Cheng CH. Mass Transfer Mechanisms and Transport Resistances in Membrane Separation Process. Chapter 2 In: Mass Transfer - Advancement in Process Modelling. London: IntechOpen; 2015: 15-40. DOI: 10.5772/60866.

  • [12] Dabestani S Arcot J Chen V. Protein recovery from potato processing water: Pre-treatment and membrane fouling minimization. J Food Eng. 2017;195:85-96. DOI: 10.1016/j.jfoodeng.2016.09.013.

  • [13] Brião VB Tavares CRG. Pore blocking mechanism for the recovery of milk solids from dairy wastewater by ultrafiltration. Braz J Chem Eng. 2015;29(2):393-407. DOI: 10.1590/S0104-66322012000200019.

  • [14] Ahmadun FR Pendashteh A Abdullah LC Biak DRA Madaeni SS Abidin ZZ. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 2009;170:530-551. DOI: 10.1016/j.jhazmat.2009.05.044.

  • [15] Padaki M Surya Murali R Abdullah MS Misdan N Moslehyani A Kassim MA et al. Membrane technology enhancement in oil-water separation. A review. Desalination. 2015;357:197-207. DOI: 10.1016/j.desal.2014.11.023.

  • [16] Świerczyńska A Bohdziewicz J Puszczało E. Treatment of industrial wastewater in the sequential membrane bioreactor. Ecol Chem Eng. S. 2016;23(2):285-295. DOI: 10.1515/eces-2016-0020.

  • [17] Tomczak E Blus M. Characteristics of polymeric ultrafiltration membranes produced with the use of graphene oxide. Ecol Chem Eng S. 2018;25(3):419-429. DOI: 10.1515/eces-2018-0029.

  • [18] Munirasu S Abu Haija M Banat F. Use of membrane technology for oil field and refinery produced water treatment - A review. Process Safety Environ Protect. 2016;100:173-202. DOI: 10.1016/j.psep.2016.01.010.

  • [19] Ghidossi R Veyret D Scotto JL Jalabert T Moulin P. Ferry oily wastewater treatment. Sep Purif Technol. 2009;4:296-303. DOI: 10.1016/j.seppur.2008.10.013.

  • [20] Sun Ch Leiknes T Weitzenböck J Thorstensen B. Development of an integrated shipboard wastewater treatment system using biofilm-MBR. Sep Purif Technol. 2010;75:22-31. DOI: 10.1016/j.seppur.2010.07.005.

  • [21] Hesampour M Krzyzaniak A Nyström M. The influence of different factors on the stability and ultrafiltration of emulsified oil in water. J Membr Sci. 2008;325(1):199-208. DOI: 10.1016/j.memsci.2008.07.048.

  • [22] Abbasi M Mirfendereski M Nikbakht M Golshenas M Mohammadi T. Performance study of mullite and mullite-alumina ceramic MF membranes for oily wastewaters treatment. Desalination. 2010;259(1-3):169-178. DOI: 10.1016/j.desal.2010.04.013.

  • [23] Hua FL Tsang YF Wang YJ Chan SY Chua H Sin SN. Performance study of ceramic microfiltration membrane for oily wastewater treatment. Chem Eng J. 2007;128(2-3):169-175. DOI: 10.1016/j.cej.2006.10.017.

  • [24] Zhang H Zhong Z Xing W. Application of ceramic membranes in the treatment of oilfield-produced water: Effects of polyacrylamide and inorganic salts. Desalination. 2013;309:84-90. DOI: 10.1016/j.desal.2012.09.012.

  • [25] Matos M Gutiérrez G Lobo A Coca J Pazos C Benito JM. Surfactant effect on the ultrafiltration of oil-in-water emulsions using ceramic membranes. J Membr Sci. 2016;520:749-759. DOI: 10.1016/j.memsci.2016.08.037.

  • [26] Pendashteh AR Abdullah LCh Fakhru’l-Razia A Madaeni SS Abidina ZZ Radiah D et al. Evaluation of membrane bioreactor for hypersaline oily wastewater treatment. Process Safety Environ Protect. 2012;90:45-50. DOI: 10.1016/j.psep.2011.07.006.

  • [27] Tomczak E Kamiński W Ćwirko K. Two-level factorial experiments in the ultrafiltration of oil - water emulsions. Desalin Water Treat. 2018;128:119-124. DOI: 10.5004/dwt.2018.22625.

  • [28] Freeman LJ Ryan AG Kensler JLK Dickinson RM Vining GG. A tutorial on the planning of experiments. Quality Eng. 2013;25:315-332. DOI: 10.1080/08982112.2013.817013.

  • [29] Chang I-S Kim S-N. Wastewater treatment using membrane filtration - effect of biosolids concentration on cake resistance. Process Biochem. 2005;40:1307-1314. DOI: 10.1016/j.procbio.2004.06.019.

  • [30] Bowen R Calvo JI Hernández A. Steps of membrane blocking in flux decline during protein microfiltration. J Membr Sci. 1995;101:153-165. DOI: 10.1016/0376-7388(94)00295-A.

  • [31] Iritani E Katagiri N. Developments of blocking filtration model in membrane filtration. KONA. Powder Particle J. 2016;33:179-202. DOI: 10.14356/kona.2016024.

  • [32] Field RW Wu D Howell JA Gupta BB. Critical flux concept for microfiltration fouling. J Membr Sci. 1995;100:259-272. DOI: 10.1016/0376-7388(94)00265-Z.

  • [33] Hwang K Lin T. Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration. J Membr Sci. 2002;199:41-52. DOI: 10.1016/S0376-7388(01)00675-5.

  • [34] Chang I-S Le Clech P Jefferson B Judd S. Membrane fouling in membrane bioreactors for wastewater treatment. J Environ Eng. 2002;128(1):1018-1029. DOI: 10.1061/(ASCE)0733-9372(2002)128:11(1018).

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 14
PDF Downloads 49 49 20