Comparative Review of Artificial Light Sources for Solar-Thermal Biomass Conversion Research Applications

Szymon Sobek 1  and Sebastian Werle 1
  • 1 Institute of Thermal Technology, Silesian University of Technology, 44-100, Gliwice, Poland


In recent years solar-thermal methods of waste biomass conversion are promptly gaining on attention. For researchers working in areas that suffer from lack of natural solar power, the choice of proper solar simulator for the study is crucial. Solar simulator consist of artificial light source enclosed in proper housing with optical and cooling system, powered by dedicated power supply. Solar simulators are not only granting independence from external conditions, yet provide possibility of research expand due to tuneable output power and emissive spectrum. Over the years, solar simulators were powered by different types of lamps. Throughout the history, the solar simulators were used mainly in photovoltaic and space research, crystal growth industry, and the material testing. For mentioned purposes, the total thermal output power of simulator was playing secondary role in comparison to urgent need of spectral match, irradiance distribution and beam uniformity with terrestrial or extra-terrestrial sunlight. For thermal applications, solar simulators are facing the challenge of providing high output power, described by high radiant heat flux and high heat flux density over the specified target area. In presented paper the comparison of xenon arc, metal halide lams and tungsten halogen for thermal applications has been presented with emphasis on available thermal power, spectral match with natural sunlight and operational issues. The course of decision taken during the selection of artificial light source for construction of laboratory-scale solar pyrolytic reactor is proposed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Adib R, Folkecenter M, Eckhart M, El-Ashry M, Hales D, Hamilton K, Renewables 2018. Global Status Report. Paris: REN21; 2018. ISBN 9783981891133.

  • [2] Chew JJ, Doshi V. Recent advances in biomass pretreatment - Torrefaction fundamentals and technology. Renew Sustain Energy Rev. 2015:15:4212-4222. DOI: 10.1016/j.rser.2011.09.017.

  • [3] Basu P. Biomass Gasification and Pyrolysis Handbook. Academic Press, Elsevier; 2010. ISBN 9780123749888.

  • [4] Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy. 2006:31:3458-3470. DOI: 10.1016/

  • [5] Werle S, Wilk RK. A review of methods for the thermal utilization of sewage sludge: The Polish perspective. Renew Energy. 2010:35:1914-1919. DOI: 10.1016/j.renene.2010.01.019.

  • [6] Zeng K, Gauthier D, Minh DP, Weiss-Hortala E, Nzihou A, Flamant G. Characterization of solar fuels obtained from beech wood solar pyrolysis. Fuel. 2017:188:285-293. DOI: 10.1016/j.fuel.2016.10.036.

  • [7] Çepelioğullar Ö, Pütün AE. Products characterization study of a slow pyrolysis of biomass-plastic mixtures in a fixed-bed reactor. J Anal Appl Pyrolysis. 2014:110:363-374. DOI: 10.1016/j.jaap.2014.10.002.

  • [8] Mangut V, Sabio E, Gañán J, González JF, Ramiro A, González CM et al. Thermogravimetric study of the pyrolysis of biomass residues from tomato processing industry. Fuel Process Technol. 2006;87:109-115. DOI: 10.1016/j.fuproc.2005.08.006.

  • [9] Wang S, Dai G, Yang H, Luo Z. Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog Energy Combust Sci. 2017:62:33-86. DOI: 10.1016/j.pecs.2017.05.004.

  • [10] Zeng K, Gauthier D, Soria J, Mazza G, Flamant G. Solar pyrolysis of carbonaceous feedstocks: A review. Solar Energy. 2017:156:73-92. DOI: 10.1016/j.solener.2017.05.033.

  • [11] Isemin R, Mikhalev A, Klimov D, Grammelis P, Margaritis N, Kourkoumpas DS et al. Torrefaction and combustion of pellets made of a mixture of coal sludge and straw. Fuel. 2017:210:859-865. DOI: 10.1016/j.fuel.2017.09.032.

  • [12] Smets A, Jager K, Isabella O, Swaai RV, Zeman M. Solar Energy: The Physics and Engineering of Photovoltaic Conversion Technologies and Systems. Cambridge, England: UIT; 2016. ISBN 9781609860325.

  • [13] Tawfik M, Tonnellier X, Sansom C. Light source selection for a solar simulator for thermal applications: A review. Renew Sustain Energy Rev. 2018:90:802-813. DOI: 10.1016/j.rser.2018.03.059.

  • [14] Grandi G, Ienina A, Bardhi M. Effective low-cost hybrid LED-halogen solar simulator. IEEE Trans Ind Appl. 2014;50:3055-3064. DOI: 10.1109/TIA.2014.2330003.

  • [15] Luque A, Hegedus S, editors. Handbook of Photovoltaic Science and Engineering. Wiley; 2011. DOI: 10.1002/9780470974704. ISBN 9780470721698.

  • [16] Kasten F, Young AT. Revised optical air mass tables and approximation formula. Appl Optics. 1989;28:4735-4738. DOI: 10.1364/AO.28.004735.

  • [17] Ekman BM, Brooks G, Rhamdhani MA. Development of high flux solar simulators for solar thermal research. Energy Technol. 2016;141:149-159. DOI: 10.1007/978-3-319-48220-0_17.

  • [18] Chawla MK. A step by step guide to selecting the “right” solar simulator for your solar cell testing application. Photo Emission Tech Inc. 2017:1-6.

  • [19] Georgescu A, Damache G, Gîrţu MA. Class A small area solar simulator for dye-sensitized solar cell testing. J Optoelectron Adv Mater. 2008;10:3003-3007.

  • [20] Sciencetech Inc. Light Sources Overview., 2018.

  • [21] Esen V, Sağlam Ş, Oral B. Light sources of solar simulators for photovoltaic devices: A review. Renew Sustain Energy Rev. 2017;77:1240-1250. DOI: 10.1016/j.rser.2017.03.062.

  • [22] Pozzobon V, Salvador S, Bézian JJ, El-Hafi M, Le Maoult Y, Flamant G. Radiative pyrolysis of wet wood under intermediate heat flux: Experiments and modelling. Fuel Process Technol. 2014;128:319-330. DOI: 10.1016/j.fuproc.2014.07.007.

  • [23] Kongtragool B, Wongwises S. A four power-piston low-temperature differential Stirling engine using simulated solar energy as a heat source. Solar Energy. 2008;82:493-500. DOI: 10.1016/j.solener.2007.12.005.

  • [24] Boulet P, Parent G, Acem Z, Collin A, Försth M, Bal N, et al. Radiation emission from a heating coil or a halogen lamp on a semitransparent sample. Int J Therm Sci. 2014;77:223-232. DOI: 10.1016/j.ijthermalsci.2013.11.006.

  • [25] Authier O, Lédé J. The image furnace for studying thermal reactions involving solids. Application to wood pyrolysis and gasification, and vapours catalytic cracking. Fuel. 2013;107:555-569. DOI: 10.1016/j.fuel.2013.01.041.

  • [26] Boutin O, Ferrer M, Lédé J. Radiant flash pyrolysis of cellulose - Evidence for the formation of short life time intermediate liquid species. J Anal Appl Pyrolysis. 1998;47:13-31. DOI: 10.1016/S0165-2370(98)00088-6.

  • [27] Grønli M, Melaaen MC. Mathematical model for wood pyrolysis - Comparison of experimental measurements with model predictions. Energy Fuels. 2000;14:791-800. DOI: 10.1021/ef990176q.

  • [28] Lédé J. Comparison of contact and radiant ablative pyrolysis of biomass. J Anal Appl Pyrolysis. 2003;70:601-618. DOI: 10.1016/S0165-2370(03)00043-3.

  • [29] Rony AH, Mosiman D, Sun Z, Qin D, Zheng Y, Boman JH et al. A novel solar powered biomass pyrolysis reactor for producing fuels and chemicals. J Anal Appl Pyrolysis. 2018;132:19-32. DOI: 10.1016/j.jaap.2018.03.020.

  • [30] Boutin O, Ferrer M, Lédé J. Flash pyrolysis of cellulose pellets submitted to a concentrated radiation: Experiments and modelling. Chem Eng Sci. 2002;57:15-25. DOI: 10.1016/S0009-2509(01)00360-8.

  • [31] Sobek S, Werle S. Solar pyrolysis of waste biomass: Part 1 reactor design. Renew Energy. 2019;143:1939-1948. DOI: 10.1016/j.renene.2019.06.011.


Journal + Issues