Characteristics of Acute Toxicity Dynamics of Selected Toxicants on Aquatic Crustaceans

Open access


Determining the value of a half-effective or half-life concentration or dose of toxicant is the main purpose of acute toxicity studies, and this is also the most commonly used value in the toxicity characteristics of substances. By conducting tests that meet the criteria and requirements for the determination of acute toxicity, due to the use of appropriate mathematical tools and concentrations resulting in complete lethal effects in the studied groups, considerably more important values can be achieved, which give a possibility for the analysis of the entire process’s dynamics, as well as determining the threshold values of the effect time and toxicant concentration. This was the purpose of our research, in which the research species were Daphnia magna and Cypris pubera. The effect of the conducted research allowed to determine and compare the two toxicants: ammonium and copper(II) ions by it’s: concentration limit values (Cth), internal toxicity of the receptor-ligand complex (α), apparent, constant disintegration of this complex (Kapp) and different time values of the effect (Tt, Tin, MLT), which, along with concentration, is equally important determinant of the development of a toxic effect.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Walker CH Sibly RM Hopkin SP Peakall DB. Principles of Ecotoxicology. 4th Ed. Boca Raton: CRC Press; 2012. ISBN: 9781439862667 - CAT# K12907.

  • [2] Bosch AC O’Neill B Sigge GO Kerwath SE Hoffman LC. Heavy metals in marine fish meat and consumer health: a review. J Sci Food Agric. 2016;96(1):32-48. DOI: 10.1002/jsfa.7360.

  • [3] Adams WJ Blust R Borgmann U Brix KV DeForest DK Green AS et al. Utility of tissue residues for predicting effects of metals on aquatic organisms. Integr Environ Assess Manage. Special Issue: Tissue Residue Approach Special Series. 2011;7(1):75-98. DOI: 10.1002/ieam.108.

  • [4] Cheng S. Heavy metal pollution in China: origin pattern and control. Environ Sci Pollut Res. 2003;3:192-198. DOI: 10.1065/espr2002.11.141.1.

  • [5] Atli G Canli M. Alterations in ion levels of freshwater fish Oreochromis niloticus following acute and chronic exposures to five heavy metals. Turk J Zool. 2010;35:725-736. DOI: 10.3906/zoo-1001-31.

  • [6] Atli G Canli M. Essential metal (Cu Zn) exposures alter the activity of ATPases in gill kidney and muscle of Tilapia Oreochromis niloticus. Ecotoxicology. 2011; 20(8):1861-1869. DOI: 10.1007/s10646-011-0724-z.

  • [7] Basha PS Rani AU. Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia). Ecotox Environ Safety. 2003;56:218-221. DOI: 10.1016/S0147-6513(03)00028-9.

  • [8] Philips S Laanbroek HJ Verstraete W. Origin causes and effects of increased nitrite concentrations in aquatic environments. Rev Environ Sci Bio/Technol. 2002;1(2):115-141. DOI: 10.1023/A:1020892826575.

  • [9] Hoffman DJ Rattner BA Burton GA Jr Cairns J Jr. Handbook of Ecotoxicology. 2nd Ed. Boca Raton: CRC Press; 2003. ISBN: 9781566705462 - CAT# L1546.

  • [10] Traudt EM Ranville JF Smith SA Meyer JS. A test of the additivity of acute toxicity of binary-metal mixtures of Ni with Cd Cu and Zn to Daphnia magna using the inflection point of the concentration -response curves. Environ Toxicol Chem. 2016;35:1843-1851. DOI: 10.1002/etc.3342.

  • [11] Cui R Kwak JI An YJ. Comparative study of the sensitivity of Daphnia galeata and Daphnia magna to heavy metals. Ecotox Environ Safety. 2018;162:63-70. DOI: 10.1016/j.ecoenv.2018.06.054.

  • [12] Santore RC Di Toro DM Paquin PR Allen HE Meyer JS. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem. 2001;20:2397-2402. DOI: 10.1002/etc.5620201035.

  • [13] Wang N Ingersoll CG Hardesty DK Ivey CD Kunz JL May TW et al. Acute toxicity of copper ammonia and chlorine to glochidia and juveniles of freshwater mussels (Unionidae). Environ Toxicol Chem. 2007;26(10):2036-2047. DOI: 10.1016/j.aquatox.2008.04.003.

  • [14] OECD Test Guidelines for the Chemicals.

  • [15] Zinkovsky VG Zhuk OV Oloś G Zhuk M. Dynamic modelling of xenobiotic action on organism using parameters of lethal toxic effect. Proc XVI National Conf Applications Mathematics Biology Medicine. Krynica Sept 14-16 2010; 111-116. ISBN: 9788374643344.

  • [16] Zinkovskyy YG Zhuk OV Oloś G Zhuk M Jabłecki R. Opracowanie regresyjnych metod obliczania zasadniczych parametrów alternatywnych toksycznych efektów ksenobiotyków. Chem Didact Ecol Metrol. 2011;16(1-2):29-34.

  • [17] Potrohov AS Zinkovsky OG Zinkovsky VG Oloś G. Dynamika efektów toksycznych różnych stężeń jonów amonu u ryb. (Dynamics of toxic effects of different amonium ions concentrations on fish.) Chem Didact Ecol Metrol. 2010;15(1):29-38.

  • [18] Henry RP Lucu Č Onken H Weihrauch D. Multiple functions of the crustacean gill: osmotic/ionic regulation acid-base balance ammonia excretion and bioaccumulation of toxic metals. Front Physiol. 2012;3:431. DOI: 10.3389/fphys.2012.00431.

  • [19] Atli G Canli M. Enzymatic responses to metal exposures in a freshwater fish Oreochromis niloticus. Comp Biochem Physiol. 2007;145:282-287. DOI: 10.1016/j.cbpc.2006.12.012

  • [20] Mackay D Celsie AK Parnis JM McCarty LS Arnot JA Powell DE. The chemical exposure toxicity space (CETS) model: Displaying exposure time aqueous and organic concentration activity and onset of toxicity. Environ Toxicol Chem. 2017;36(5):1389-1396. DOI: 10.1002/etc.3668.

  • [21] Kim S Samanta P Yoo J Kim WK Jung J. Time-dependent toxicity responses in Daphnia magna exposed to CuO and ZnO nanoparticles. Bull Environ Contam Toxicol. 2017;98(4):502-507. DOI: 10.1007/s00128-016-2022-1

  • [22] Murray L Daly F Little M Cadogan M. Toxicology Handbook. Lismore: Elsevier; 2015. ISBN: 9780729579391.

  • [23] Wang HJ Xiao XC Wang HZ Li Y Yu Q Liang XM et al. Effects of high ammonia concentrations on three cyprinid fish: Acute and whole-ecosystem chronic tests. Sci Total Environ. 2017;598:900-909. DOI: 10.1016/j.scitotenv.2017.04.070

  • [24] Laskowski R. Some good reasons to ban the use of NOEC LOEC and related concepts in ecotoxicology. Oikos. 1995;1:140-144. DOI: 10.2307/3545738.

  • [25] Hamilton MA Russo RC Thurston RV. Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environ Sci Technol. 1977;11(7):714-719. DOI: 10.1021/es60130a004.

  • [26] Principles and Methods of Toxicology. 5th Ed. Boca Raton: CRC Press; 2007. DOI: 10.1201/b14258.

  • [27] De Laender F De Schamphelaere KA Vanrolleghem PA Janssen CR. Comparison of different toxic effect sub-models in ecosystem modelling used for ecological effect assessments and water quality standard setting. Ecotoxicol Environ Safety. 2008;69(1):13-23. DOI: 10.1016/j.ecoenv.2007.08.020.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 84 84 22
PDF Downloads 49 49 10