The Influence of Temperature Changes in Activated Sludge Processes on Ibuprofen Removal Efficiency

Open access

Abstract

The article presents results regarding the ibuprofen reduction rate at three various temperature values (8, 18 and 28 °C) which were conducted using a static test in accordance with the PN-C-04645 ‘Water and wastewater. Evaluation of partial biodegradation of anionic and non-ionic surface active substances. Initial test’ standard. A single study cycle including the analysis of ibuprofen degradation rate in specific temperature variants lasted 24 h. The activated sludge for tests was obtained from the aeration zone of a bioreactor localized in the Central Wastewater Treatment Plant in Poznan City (Poland), which was used for inoculation (1 g/dm3) of sterile samples with the medium and ibuprofen (10 mg/dm3) after appropriate pre-treatment (intense aeration for 5 h). The analysis procedure included the separation and concentration of analytes from biodegradation samples by means of solid phase extraction (SPE) and subsequent determination with high performance liquid chromatography coupled with mass spectrometry (LC-MS/MS) using an UltiMate 3000 RSLC liquid chromatogram (Dionex, USA) with a tandem API 4000 QTRAP mass spectrometer (Biosystem, MDS Sciex, USA). Both literature review as well as the conducted initial studies confirmed that the removal of ibuprofen proceeds more rapidly at higher temperature values. A higher retention rate also enhanced the reduction of ibuprofen concentration. A decrease of its concentration was observed after 24 h, which reached 40 and 50 % for temperature values of 8 and 18 °C, accordingly, whereas the highest reduction by approx. 65 % was noted at 28 °C.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Eslami A Amini MM Yazdanbakhsh AR Rastkari N Mohseni-Bandpei A Nasseri S et al. Environ Monit Assess. 2015;187(12):1-15. DOI: 10.1007/s10661-015-4952-1.

  • [2] Salgado R Noronha JP Oehmen A Carvalho G Reis MA. Water Sci Technol. 2010;62(12):2862-2871. DOI: 10.2166/wst.2010.985.

  • [3] Yu CP Roh H Chu KH. Environ Sci Technol. 2007;41:486-492. DOI: 10.1021/es060923f.

  • [4] Landers TF Cohen B Wittum TE Larson EL. Public Health Rep. 2012;1271:4-22. DOI: 10.1177/003335491212700103.

  • [5] Szymonik A Lach J Malińska K. Ecol Chem Eng S. 2017;24(1):65-85. DOI: 10.1515/eces-2017-0006.

  • [6] Langenhoff A Inderfurth N Veuskens T Schraa G Blokland M Kujawa-Roeleveld K et al. BioMed Res Int. 2013:1-9. DOI: 10.1155/2013/325806.

  • [7] Kosjek T Heath E Kompare B. Anal Bioanal Chem. 2007;387(4):1379-1387. DOI: 10.1007/s00216-006-0969-1.

  • [8] Zając A Kruszelnicka I Ginter-Kramarczyk D Zembrzuska J. Przem Chem. 2016;95:263-268. DOI: 10.15199/62.2016.2.15.

  • [9] Liu J Dan X Lu G Shen J Wu D Yan Z. Ecotoxicol Environ Saf. 2018;15;154:214-220. DOI: 10.1016/j.ecoenv.2018.02.052.

  • [10] Melvin SD Cameron MC Lanctôt CM. J. Toxicol Environ Health A. 2014;77(6): 337-345. DOI: 10.1080/15287394.2013.865107.

  • [11] Zuriaga E Lomba L German B Lanuza PM Aldea L Ribate MP et al. Chem Ecol. 2019;35(2):102-114 DOI: 10.1080/02757540.2018.1540608.

  • [12] Zhou Y Wu S Zhou H Huang H Zhao J Deng Y. Environ Int. 2018;121(1):523-537. DOI: 10.1016/j.envint.2018.09.041.

  • [13] Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 as regards priority substances in the field of water policy. https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32013L0039&from=EN.

  • [14] Ginter-Kramarczyk D Zając A Kruszelnicka I Zembrzuska J Budnik I. Przem Chem. 2013;92:596-600.

  • [15] Larsson DGJ. Philos Trans R Soc B. 2014;369:1-7. DOI:10.1098/rstb.2013.0571.

  • [16] Cinà P Bacci G Arancio W Gallo G Fani R Puglia AM et al. Bioresour Technol. 2019;282:254-261. DOI: 10.1016/j.biortech.2019.03.018.

  • [17] Küummerer K. Annual Rev Environ Resour. 2010;35:57-75. DOI: 10.1146/annurev-environ-052809-161223.

  • [18] Gilbert N. Nature. 2011;476:265. DOI: 10.1038/476265a.

  • [19] Kujawa-Roeleveld K Schuman E Grotenhuis T Kragić D Mels A Zeeman G. Biodegradability of human pharmaceutically active compounds (PhAC) in biological systems treating source separated wastewater streams. Third SWITCH Scientific Meeting Brazil 2008. http://www.switchurbanwater.eu/outputs/pdfs/W41_GEN_RPT_D4.1.3_Biodegradability_and_fate_of_phamarceutical_compounds.pdf.

  • [20] Kruglova A Kråkström M Riska M Mikola A Rantanen P Vahala R. Bioresour Technol. 2016;214:81-88. DOI: 10.1016/j.biortech.2016.04.037.

  • [21] Kruglova A Ahlgren P Korhonen N Rantanen P Mikola A Vahala R. Sci Total Environ. 2014;499:394-401. DOI: 10.1016/j.scitotenv.2014.08.069.

  • [22] Ebele AJ Abdallah MAE Harrad S. Emerg Contam.2017;3:1-16. DOI: 10.1016/j.emcon.2016.12.004.

  • [23] Fernandez-Fontaina E Omil F Lema JM Carballa M. Water Res. 2012;46:5434-5444. DOI: 10.1016/j.watres.2012.07.037.

  • [24] Clara M Kreuzinger N Strenn B Gans O Kroiss H. Water Res. 2015;39:97-106. DOI: 10.1016/j.watres.2004.08.036.

  • [25] Chen X Vollertsen J Nielsen JL Dall AG Bester K. Ecotoxicology. 2015;24:2073-2080. DOI: 10.1007/s10646-015-1548-z.

  • [26] Falås P Baillon-Dhumez A Andersen HR Ledin A la Cour Jansen J. Water Res. 2012;46:1167-1175. DOI: 10.1016/j.watres.2011.12.003.

  • [27] Prasertkulsak S Chiemchaisri C Chiemchaisri W Itonaga T Yamamoto K. Chemosphere. 2016;150:624-631. DOI: 10.1016/j.chemosphere.2016.01.031.

  • [28] Kimura K Hara H Watanabe Y. Water Sci Technol. 2010;62:1084-1089. DOI: 10.2166/wst.2010.356.

  • [29] Caracciolo AB Topp E Grenni P. J Pharm Biomed Anal. 2015;106:25-36. DOI: 10.1016/j.jpba.2014.11.040.

  • [30] PN-C-04645. 2001. Woda i ścieki. Badanie biodegradacji częściowej anionowych i niejonowych substancji powierzchniowo czynnych. Test wstępny. (Polish Standard. PN-C-04645:2001. Water and wastewater. The study of partial biodegradation of anionic and non-ionic surface active substances. The preliminary test). http://sklep.pkn.pl/pn-c-04645-2001p.html.

  • [31] PN-ISO 15705:2005. Jakość wody. Oznaczanie indeksu chemicznego zapotrzebowania tlenu (SP-ChZT). (Polish Standard. PN-ISO 15705:2005 PN-ISO 15705:2005 Water quality. Determination of chemical oxygen demand index (COD). http://sklep.pkn.pl/pn-iso-15705-2005p.html.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 97 97 8
PDF Downloads 39 39 5