Adsorption of Ciprofloxacin from Aqueous Environment by Using Synthesized Nanoceria

Open access

Abstract

Antibiotics are widely detected emerging contaminants in water environments and possess high potential risks to human health and aquatic life. However, conventional water treatment processes cannot remove them sufficiently. To develop innovative nanoadsorbents for effectively remove antibiotic contaminants from water environment, nanoceria were prepared via in situ precipitation method, and evaluated their adsorption capacity for a model antibiotic, ciprofloxacin (CIP). The properties of the prepared nanoceria were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and vibration sample magnetization (VSM). The effect of various operating parameters such as pH, initial CIP concentration, contact time, and adsorbent dosage on adsorptions of CIP were studied in batch experiments. Maximum adsorption capacity of the nanoceria was 49.38 mg/g at the conditions of pH 5, initial CIP concentration of 200 mg/dm3 and adsorbent dosage of 0.2 g/dm3, when 95.43 % of the CIP was removed. For adsorption kinetics, both pseudo-first-order and pseudo-second-order models can well describe the experimental data, indicating that the adsorption process was controlled by both physical diffusion and chemical interaction. For adsorption isotherms, the Freundlich model could fit the experimental data better than the Langmuir and Temkin models, suggesting a multilayer adsorption process. The thermal dynamics study showed the absorption process was spontaneity, exothermic, and irreversible. Finally it was concluded that the nanoceria can be used effectively for CIP removal.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Gao Y Li Y Zhang L Huang H Hu J Shah SM et al. J Colloid Interface Sci. 2012;368:540-546. DOI: 10.1016/j.jcis.2011.11.015.

  • [2] Agarwal S Tyagi I Gupta VK Dehghani MH Jaafari J Balarak D et al. J Mol Liq. 2016;224:618-623. DOI: 10.1016/j.molliq.2016.10.032.

  • [3] Wang Z Shen D Shen F Wu C Gu S. J Mol Liq. 2017;241:612-621. DOI: 10.1016/j.molliq.2017.05.097.

  • [4] Elmolla ES Chaudhuri M. J Hazard Mater. 2010;173:445-449. DOI: 10.1016/j.jhazmat.2009.08.104.

  • [5] Gulkowska A Leung HW So MK Taniyasu S Yamashita N Yeung LWY et al. Water Res. 2008;42:395-403. DOI: 10.1016/j.watres.2007.07.031.

  • [6] Al-Musawi TJ. J Mol Liq. 2015;211:431-441. DOI: 10.1016/j.molliq.2015.06.067.

  • [7] Zhang Y Jiao Z Hu Y Lv S Fan H Zeng Y et al. Environ Sci Pollut Res. 2017;24:2987-2995. DOI: 10.1007/s11356-016-7964-7.

  • [8] Wu S Zhao X Li Y Zhao C Du Q Sun J et al. Chem Eng J. 2013;230:389-395. DOI: 10.1016/j.cej.2013.06.072.

  • [9] Carabineiro SA Thavornamornsri T Pereira MF Figueiredo JL. Water Res. 2011;45:4583-4591. DOI: 10.1016/j.watres.2011.06.008.

  • [10] Rivera-Utrilla J Sánchez-Polo M Ferro-García MÁ Prados-Joya G Ocampo-Pérez R. Chemosphere. 2013;93:1268-1287. DOI: 10.1016/j.chemosphere.2013.07.059.

  • [11] Ay F Kargi F. J Hazard Mater. 2010;179:622-627. DOI: 10.1016/j.jhazmat.2010.03.048.

  • [12] Yuan F Hu C Hu X Qu J Yang M. Water Res. 2009;43:1766-1774. DOI: 10.1016/j.watres.2009.01.008.

  • [13] Sirtori C Zapata A Oller I Gernjak W Agüera A Malato S. Water Res. 2009;43:661-668. DOI: 10.1016/j.watres.2008.11.013.

  • [14] Vakili M Rafatullah M Salamatinia B Abdullah AZ Ibrahim MH Tan KB et al. Carbohydr Polym. 2014;113:115-130. DOI: 10.1016/j.carbpol.2014.07.007.

  • [15] Homem V Alves A Santos L. Chem Eng J. 2013;220:35-44. DOI: 10.1016/j.cej.2013.01.047.

  • [16] Doltabadi M Alidadi H Davoudi M. Environ Prog Sustain. 2016;35:1078-1090. DOI: 10.1002/ep.12334.

  • [17] Shukla A Zhang YH Dubey P Margrave JL Shukla SS. J Hazard Mater. 2002;95:137-152. DOI: 10.1016/S0304-3894(02)00089-4.

  • [18] Peng X Luan Z Ding J Di Z Li Y Tian B. 2005:1;59:399-403. DOI: 10.1016/j.matlet.2004.05.090.

  • [19] Phatai P Futalan CM. Desalin Water Treat. 2015;57:1-10. DOI: 10.1080/19443994.2015.1027281.

  • [20] Su Y Yang W Sun W Li Q Shang JK. Chem Eng J. 2015;268:270-279. DOI: 10.1016/j.cej.2015.01.070.

  • [21] Liu W Zhao X Wang T Fu J Ni J. J Mater Chem A. 2015;3:17676-17684. DOI: 10.1039/C5TA04521E.

  • [22] Phokha S Pinitsoontorn S Maensiri S. Nano-Micro Lett. 2013;5:223-233. DOI: 10.1007/bf03353753.

  • [23] Peng F He PW Luo Y Lu X Liang Y Fu J. Clean - Soil Air Water. 2012;40:493-498. DOI: 10.1002/clen.201100469.

  • [24] Vučurović VM Razmovski RN Tekić MN. J Taiwan Inst Chem E. 2012;43:108-111. DOI: 10.1016/j.jtice.2011.06.008.

  • [25] Fu J Song R Mao WJ Wang Q An SQ Zeng QF et al. Environ Prog Sustain. 2011;30:558-566. DOI: 10.1002/ep.10506.

  • [26] Dehghani MH Faraji M Mohammadi A Kamani H. Korean J Chem Eng. 2017;34:454-462. DOI: 10.1007/s11814-016-0274-4.

  • [27] Dursun AY. Biochem Eng J. 2006;28:187-195. DOI: 10.1016/j.bej.2005.11.003.

  • [28] Peng H Pan B Wu M Liu Y Zhang D Xing B. J Hazard Mater. 2012;233-234:89-96. DOI: 10.1016/j.jhazmat.2012.06.058.

  • [29] Avisar D Lester Y Mamane H. J Hazard Mater. 2010;175:1068-1074. DOI: 10.1016/j.jhazmat.2009.10.122.

  • [30] Rahdar S Rahdar A Igwegbe CA Moghaddam F Ahmadi S. Desalin Wat Treat. 2019;141:386-393. DOI: 10.5004/dwt.2019.23473.

  • [31] Bazrafshan E Rahdar S Balarak D Mostafapour F Zazouli M. Iran J Health Sci. 2015;3:15-28. DOI: 10.1080/19443994.2014.895778.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 120 120 25
PDF Downloads 37 37 11