Chromatographic Examinations in the Gas Network Odourised by Tetrahydrothiophene

Open access

Abstract

The paper presents the results of the spread of the tetrahydrothiophene (THT) - used as odourant - in the gas network. Such analyses allow quick detection of leaks in networks, systems and devices of gas supply directly to consumers. The main goal of the study was to determine the effectiveness of the use of portable chromatograph and comparing it with a stationary odourant concentration analyser. Based on these studies, an attempt to determine the odouration zone for the selected city have been also taken. For this purpose, three series of measurements were made - in each series 13 points were analysed. Obtained results confirmed the effectiveness of the measurement a concentration of odourant in the gas network using a portable gas chromatograph - difference in relation to the stationary chromatograph ranged from 1.91 to 2.55 %.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Kilgallon R Gilfillan SMV Haszeldine RS McDermott CI. Odourisation of CO2 pipelines in the UK: Historical and current impacts of smell during gas transport. Int J Greenhouse Gas Control. 2015;37:504-512. DOI: 10.1016/j.ijggc.2015.04.010.

  • [2] Alpekin G DeVoss S Dubovik M Monroe J Amalfitano R Israelson G. Regenerable sorbent for natural gas desulfurization. J Materials Eng Performance. 2006;154. DOI: 10.1361/105994906X117251.

  • [3] Tenkrat D Prokes O Hlincik T. Natural Gas Odorization. Shanghai: INTECH Open Access Publisher; 2010. DOI: 10.5772/9825.

  • [4] Amirbekyan D. Natural gas odorization monitoring for safety and consistency. Pipeline Gas J. 2013;240:12. https://pgjonline.com/magazine/2013/december-2013-vol-240-no-12/features/natural-gas-odorization-monitoring-for-safety-and-consistency.

  • [5] Saadatmand M Foroughi H Dai T Misra T Bensabath T Farnood R. Odor fading in natural gas distribution systems. Process Safety Environ Protect. 2015;94:131-139. DOI: 10.1016/j.psep.2015.01.005.

  • [6] Tukmakov L Mubarakshin BR Tonkonog VG. Simulation of the process of odorizing a natural gas. J Eng Phys Thermophys. 2016; 89(1):135-140. DOI: 10.1007/s10891-016-1360-5.

  • [7] Capelli L Sironi S Del Rosso R. Evaluation of olfactory properties of gas odorants. Chem Eng Transact. 2014;36:301-306. DOI: 10.3303/CET1436051.

  • [8] Seguel R Mancilla C Sakamoto PA. Continuous measurement of odorant composition for liquefied petroleum gas. Chem Eng Transact. 2018;68:331-336. DOI: 10.3303/CET1868056.

  • [9] Xu N Ying H Zhu L. Determination of tetrahydrothiophene in ambient air by gas chromatography with a PFPD detector coupled to a preconcentration technology. Proc 13th World Clean Air Environ Protect Congress Exhibit. London; 2004. https://pdfs.semanticscholar.org/6587/a75286dd2cde8b98752ba0f0115aaf0a32f4.pdf.

  • [10] Tetrahydrothiophen The MAK Collection for Occupational Health and Safety; 2012: 291-303. DOI: 10.1002/3527600418.mb11001e0026a.

  • [11] Usher MJ. Odor Fade-Possible Causes and Remedies. Proc No. 285. Gas Measurement School. Ontario CA Canadian Gas Assoc.1999. https://pscfiles.tamu.edu/library/online-library/odorfadecause.pdf.

  • [12] Nagata Y. Measurement of odor threshold by Triangle Odor Bag Method. Annual Meet Odour Res Eng Assoc; 2003. http://cschi.cz/odour/files/world/Measurement%20of%20odor%20threshold%20by%20Triangle%20Odor%20Bag%20Method.pdf.

  • [13] Hennings U Reimert R. Behaviour of sulfur-free odorants in natural gas fed PEM fuel cell systems. Fuel Cells. 2007;7:63-69. DOI: 10.1002/fuce.200500222.

  • [14] Ruzsanyi V Sielemann S Baumbach JI. Detection of sulfur-free odorants in natural gas using ion mobility spectrometry. J Environ Monit. 2007;9(1):61-65. DOI: 10.1039/b613951e.

  • [15] Langford VS McEwan MJ Askey M Barnes H Olerenshaw JG. Comprehensive instrumental odor analysis using SIFT-MS: a case study. Environments. 2018;5(4)43. DOI: 10.3390/environments5040043.

  • [16] Yashin YI Yashin AY. Miniaturization of gas-chromatographic instruments. J Analyt Chem. 2001;56(9):794-805. DOI: 10.1023/A:1016795926329.

  • [17] Henry C. Micro Meets Macro: Interfacing microchips and mass spectrometers. Anal Chem. 1997;69:359A-361A. DOI: 10.1021/ac971659z.

  • [18] Belgiorno V Naddeo V Zarra T. Odour Impact Assessment Handbook. New Jersey: John Wiley Sons Inc; 2013. ISBN: 9781119969280.

  • [19] Guz Ł Łagód G Jaromin-Gleń K Suchorab Z Sobczuk H Bieganowski A. Application of gas sensor arrays in assessment of wastewater purification effects. Sensors. 2015;15(1):1-21. DOI: 10.3390/s150100001.

  • [20] Bourgeois W Romain AC Nicolas J Stuetz RM. The use of sensor arrays for environmental monitoring: interests and limitations. J Environ Monit. 2003;5(6):852-860. DOI: 10.1039/B307905H.

  • [21] Gottlieb J. Field Screening Europe. Netherlands: Kluwer Academic Publishers; 1997. ISBN: 9400914733.

  • [22] Djogo M Kiurski J Adamović D Vojinović Miloradov M Radonić J Turk-Sekulic M. Hazardous air pollutants (HAPs) in printing facility in Novi Sad. Annals Faculty Eng Hunedoara - Int J Eng. 2011;9:101-104. http://annals.fih.upt.ro/pdf-full/2011/ANNALS-2011-4-21.pdf.

  • [23] De Nijs RCM van Dalen J Smit ALC van Loo EM. Fast on-site determination of tetrahydrothiophene in natural gas with a portable micro gas chromatograph: A feasibility study. J High Resol Chromatogr. 1993;16(6):379-380. DOI: 10.1002/jhrc.1240160610.

  • [24] Gantt B Meskhidze N Kamykowski D. A new physically-based quantification of marine isoprene and primary organic aerosol emissions. Atmos Chem Phys. 2009;9:4915-4927. DOI: 10.5194/acp-9-4915-2009.

  • [25] Geron C Guenther A Greenberg J Loescher H Clark D Baker B. Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica. Atmosph Environ. 2002;36. DOI: 10.1016/S1352-2310(02)00301-1.

  • [26] Funk J Jones C Baker C Fuller H Giardina C Lerdau M. Diurinal variation in the basal emission rate of isoprene. Ecol Applications. 2003;13(1). DOI: 10.1890/1051-0761(2003)013[0269:DVITBE]2.0.CO;2.

  • [27] Karl T Potosnak M Guenther A Clark D Walker J Herrick JD et al. Exchange processes of volatile organic compounds above a tropical rain forest: Implications for modeling tropospheric chemistry above dense vegetation. J Geophys Res. 2004;109:D18306. DOI: 10.1029/2004JD004738.

  • [28] De Hate R Skelly B Bourgeois M Desai U Giffe T Johnson T et al. Managing public health risks using air monitoring at a former manufactured gas plant site. J Environ Protect. 2014;5:1400-1405. DOI: 10.4236/jep.2014.514133.

  • [29] Huszał A. Nawanianie paliw gazowych gwarancją ich bezpiecznego użytkowania (Odourising gas fuels guarantees their safe use). Nafta-Gaz. 2017;73(11):878-886. DOI: 10.18668/NG.2017.11.08.

  • [30] Schwinn A. Techniki nawaniania gazu ziemnego (Odourising techniques for natural gas). In: Wójtowicz A Nawrocka-Fuchs B editors. Historia gazownictwa polskiego od połowy XIX wieku po rok 2000 (The history of Polish gas industry from the mid-nineteenth century to the year 2000). Warszawa: Polskie Zrzeszenie Inżynierów i Techników Sanitarnych. Zarząd Główny; 2002. ISBN: 8387792225.

  • [31] Seguel R Mancilla C Sakamoto P. Continuous measurement of odorant composition for liquefied petroleum gas. Chem Eng Trans. 2018;68:331-336. DOI: 10.3303/CET1868056.

  • [32] Gross R Fontana E Silva A Quadri MB Souza SMAGU. Dispersion of odorants in natural gas distribution networks. Heat Mass Transfer. 2018;54(9):2827-2834. DOI: 10.1007/s00231-018-2323-5.

  • [33] Tukmakov AL Mubarakshin BR Tonkonog VG. Simulation of the process of odorizing a natural gas. J Eng Phys Thermophys. 2018;89(1). DOI: 10.1007/s10891-016-1360-5.

  • [34] Negaresh M Farrokhnia M Mehranbod N. Modeling and control of natural gas bypass odorizer. J Nat Gas Sci Eng. 2017;50. DOI: 10.1016/j.jngse.2017.12.010.

  • [35] Koers P de Looij M. Final public report: Safety study for liquid logistics shipping concept. Prepared by DNV for Vopak/Anthony Veder; 2010. https://hub.globalccsinstitute.com/sites/default/files/publications/19006/final-public-report-safety-study-liquid-logistics-shipping-concept.pdf.

  • [36] Cleaver P Hopkins H. The application of individual and societal risk assessment to CO2 pipelines. J Pipeline Eng. 2012;11:191-199. http://www.pipemag.com/publications/journal/currentSample/JPE%20Sept%202012%20-%20sample%20issue.pdf.

  • [37] Knoope MMJ Raben IME Ramírez A Spruijt MPN Faaij APC. The influence of risk mitigation measures on the risks costs and routing of CO2 pipelines. Int J Greenhouse Gas Control. 2014;29:104-124. DOI: 10.1016/j.ijggc.2014.08.001.

  • [38] Zanchettin C Almeida LM. de Menezes FD. An intelligent monitoring system for natural gas odorization. IEEE Sensors J. 2015;151. DOI: 10.1109/JSEN.2014.2345476.

  • [39] Jo YD Crowl DA. Individual risk analysis of high-pressure natural gas pipelines. J Loss Prev Process Ind. 2008;21:589-595. DOI: 10.1016/j.jlp.2008.04.006.

  • [40] Liszka K Łaciak M Oliinyk A. Analysis of new generation odorants applicability in the Polish natural gas distribution network. AGH Drilling Oil Gas. 2014;311. DOI: 10.7494/drill.2014.31.1.59.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 71 71 22
PDF Downloads 44 44 14