Perspectives of Hydrogen Production from Corn Wastes in Poland by Means of Dark Fermentation

Open access

Abstract

A model for calculating the maximal theoretical production of hydrogen from corn wastes is proposed. The model has been used to estimate the potential for hydrogen production from cereals wastes such as wheat, barley, and corn which are cultivated in Poland. The potentials for Pomorze and other regions of Poland are compared. The hydrogen produced from cereal wastes in Poland could potentially meet 47 % of national hydrogen demand.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Urbaniec K Grabarczyk R. Hydrogen production from sugar beet molasses - A techno-economic study. J Clean Prod. 2014;65:324-329. DOI: 10.1016/j.jclepro.2013.08.027.

  • [2] Narasu ML Urbaniec K. International conference on advances in biological hydrogen production and applications ICABHPA 2012. J Clean Prod. 2013;52:11-13. DOI: 10.1016/j.jclepro.2013.02.008.

  • [3] Urbaniec K Grabarczyk R. Kierunki badań nad wykorzystaniem biomasy do otrzymywania wodoru. (Directions of studies on the use of biomass for production of hydrogen) Przem Chem. 2005;11:836-838. https://repo.pw.edu.pl/docstore/download/WUT356ca3b92b8e4e6e8c63fe93fa0d10fe/AzCz_2.pdf.

  • [4] Urbaniec K Grabarczyk R. Raw materials for fermentative hydrogen production. J Clean Prod. 2009;17:959-962. DOI: 10.1016/j.jclepro.2009.02.008.

  • [5] Panagiotopoulos JA Bakker RR De Vrije T Urbaniec K Koukios EG Claassen PAM. Prospects of utilization of sugar beet carbohydrates for biological hydrogen production in the EU. J Clean Prod. 2010;18:S9-S14. DOI: 10.1016/j.jclepro.2010.02.025.

  • [6] Kapdan IK Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Technol. 2006;38:569-582. DOI: 10.1016/j.enzmictec.2005.09.015.

  • [7] Panagiotopoulos IA Bakker RR De Vrije T Koukios EG Claassen PAM. Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy. 2010;35:7738-7747. DOI: 10.1016/j.ijhydene.2010.05.075.

  • [8] Panagiotopoulos I Dakker R Vrije T Niel E Van Koukios E et al. Exploring critical factors for fermentative hydrogen production from various types of lignocellulosic biomass. J Japan Inst Energy. 2011;90:363-368. DOI: 10.1046/j.1365-2559.2002.14891.x.

  • [9] Panagiotopoulos IA Karaoglanoglou LS Koullas DP Bakker RR Claassen PAM Koukios EG. Technical suitability mapping of feedstocks for biological hydrogen production. J Clean Prod. 2014;102:521-528. DOI: 10.1016/j.jclepro.2015.04.055.

  • [10] Hsu CW Lin CY. Commercialization model of hydrogen production technology in Taiwan: Dark fermentation technology applications. Int J Hydrogen Energy. 2016;41:4489-4497. DOI: 10.1016/j.ijhydene.2015.07.080.

  • [11] Nasr N Hafez H El Naggar MH Nakhla G. Application of artificial neural networks for modeling of biohydrogen production. Int J Hydrogen Energy. 2013;38:3189-3195. DOI: 10.1016/j.ijhydene.2012.12.109.

  • [12] Sierra R Garcia LA Holtzapple MT. Selectivity and delignification kinetics for oxidative short-term lime pretreatment of poplar wood part I: Constant-pressure. Biotechnol Prog. 2011;27:976-985. DOI: 10.1002/btpr.590.

  • [13] Sangian HF Sehe MR Tamuntuan G Zulnazri Z. Utilization of saline solutions in the modification of lignocellulose utilization of saline solutions in the modification of lignocellulose from Champaca wood. J Korean Wood Sci Technol. 2018;46:368-379. DOI: 10.5658/WOOD.2018.46.4.368.

  • [14] Taufiq-Yap YH Wong P Marliza TS Nurul Suziana NM Tang LH Sivasangar S. Hydrogen production from wood gasification promoted by waste eggshell catalyst. Int J Energy Res. 2013;37:1866-1871. DOI: 10.1002/er.3003.

  • [15] Perera KRJ Arudchelvam Y Gadhamshetty V Nirmalakhandan N. Modeling and simulation of net energy gain by dark fermentation. Int J Hydrogen Energy. 2012;37:2267-2272. DOI: 10.1016/j.ijhydene.2011.10.059.

  • [16] Trad Z Fontaine JP Larroche C Vial C. Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation. Renew Energy. 2016;98:264-282. DOI: 10.1016/j.renene.2016.03.094.

  • [17] Singh V Das D. Potential of Hydrogen-Production from Biomass. Science and Engineering of Hydrogen-Based Energy Technologies. Elsevier Inc.; 2018. DOI: 10.1016/b978-0-12-814251-6.00003-4.

  • [18] Chezeau B Vial C. Modeling and Simulation of the Biohydrogen Production Processes. Elsevier B.V; 2019. DOI: 10.1016/b978-0-444-64203-5.00019-8.

  • [19] Ghimire A Frunzo L Pirozzi F Trably E Escudie R Lens PNL et al. A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Appl Energy. 2015;144:73-95. DOI: 10.1016/j.apenergy.2015.01.045.

  • [20] Kaparaju P Serrano M Thomsen AB Kongjan P Angelidaki I. Bioethanol biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol. 2009;100:2562-2568. DOI: 10.1016/j.biortech.2008.11.011.

  • [21] Panagiotopoulos IA Bakker RR Budde MAW de Vrije T Claassen PAM Koukios EG. Fermentative hydrogen production from pretreated biomass: A comparative study. Bioresour Technol. 2009;100:6331-6338. DOI: 10.1016/j.biortech.2009.07.011.

  • [22] Tsapekos P Kougias PG Angelidaki I. Mechanical pretreatment for increased biogas production from lignocellulosic biomass; predicting the methane yield from structural plant components. Waste Manage. 2018;78:903-910. DOI: 10.1016/j.wasman.2018.07.017.

  • [23] Wu J Ein-Mozaffari F Upreti S. Effect of ozone pretreatment on hydrogen production from barley straw. Bioresour Technol. 2013;144:344-349. DOI: 10.1016/j.biortech.2013.07.001.

  • [24] Li Q Guo C Liu CZ. Dynamic microwave-assisted alkali pretreatment of cornstalk to enhance hydrogen production via co-culture fermentation of Clostridium thermocellum and Clostridium thermosaccharolyticum. Biomass Bioenergy. 2014;64:220-229. DOI: 10.1016/j.biombioe.2014.03.053.

  • [25] Nasirian N Almassi M. Optimization of biological hydrogen production process using stepwise regression method. Int J Biosci. 2014;6655:289-299. DOI: 10.12692/ijb/4.2.289-299.

  • [26] Bartacek J Zabranska J Lens PNL. Developments and constraints in fermentative hydrogen production. Biofuels Bioprod Biorefining. 2007;1:201-214. DOI: 10.1002/bbb.17.

  • [27] Pradhan N Dipasquale L D’Ippolito G Fontana A Panico A Lens PNL et al. Kinetic modeling of fermentative hydrogen production by Thermotoga neapolitana. Int J Hydrogen Energy. 2016;41:4931-4940. DOI: 10.1016/j.ijhydene.2016.01.107.

  • [28] Agencja Rynku Rolnego. Rynek zbóż w Polsce (Corn Market in Poland). Warszawa: 2013. www.arr.gov.pl/data/00321/rynek_zboz_2013_pl.pdf.

  • [29] Sołowski G. Theoretical potential of hydrogen production from textiles wastes in Pomeranian region by means of dark fermentation. In: Noch T Mikołajczewska W Wesołowska A editors. Globalizacja a regionalna ochrona środowiska Gdańsk: Wydawnictwo Gdańskiej Szkoły Wyższej; 2016. 313-317. https://mostwiedzy.pl/pl/publication/theoretical-potential-of-hydrogen-production-from-textiles-wastes-in-pomeranian-region-by-means-of-d,138189-1.

  • [30] Sołowski G. Hydrogen production from wood waste by mean of dark fermentation. In: Pikoń K Czarnowska L editors. Contemporary Problems of Power Engineering and Environmental Protection 2016. Gliwice: Published by Department of Technologies and Installations for Waste Management; 2016. 189-194. http://cleanalternative.eu/wp-content/uploads/2018/01/Merged_OSWE_book.pdf.

  • [31] Collins SR Wellner N Martinez Bordonado I Harper AL Miller CN Bancroft I et al. Variation in the chemical composition of wheat straw: the role of tissue ratio and composition. Biotechnol Biofuels. 2014;7:121. DOI: 10.1186/s13068-014-0121-y.

  • [32] Kongjan P Angelidaki I. Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: Effect of reactor configuration. Bioresour Technol. 2010;101:7789-7796. DOI: doi.org/10.1016/j.biortech.2010.05.024.

  • [33] Cantero DA Bermejo DM Cocero JM. Reaction engineering for process intensification of supercritical water biomass refining. J Supercrit Fluids. 2015;96:21-35. DOI: 10.1016/j.supflu.2014.07.003.

  • [34] Pronyk C Mazza G. Fractionation of triticale wheat barley oats canola and mustard straws for the production of carbohydrates and lignins. Bioresour Technol. 2012;106:117-124. DOI: 10.1016/j.biortech.2011.11.071.

  • [35] Panagiotopoulos IA Bakker RR De Vrije T Claassen PAM Koukios EG. Dilute-acid pretreatment of barley straw for biological hydrogen production using Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy. 2012;37:11727-11734. DOI: 10.1016/j.ijhydene.2012.05.124.

  • [36] Karimi K Taherzadeh MJ. A critical review on analysis in pretreatment of lignocelluloses: Degree of polymerization adsorption/desorption and accessibility. Bioresour Technol. 2016;203:348-356. DOI: 10.1016/j.biortech.2015.12.035.

  • [37] Merali Z Ho JD Collins SRA Gall G Le Elliston A Käsper A et al. Characterization of cell wall components of wheat straw following hydrothermal pretreatment and fractionation. Bioresour Technol. 2013;131:226-234. DOI: 10.1016/j.biortech.2012.12.023.

  • [38] Sołowski G Shalaby MS Abdallah H Shaban AM Cenian A. Production of hydrogen from biomass and its separation using membrane technology. Renew Sustain Energy Rev. 2017;82:3152-3167. DOI: 10.1016/j.rser.2017.10.027.

  • [39] Kozłowski K Lewicki A Malińska K Wei Q. Current state challenges and perspectives of biological production of hydrogen in dark fermentation process in Poland. J Ecol Eng. 2019;20:146-160. DOI: 10.12911/22998993/97270.

  • [40] Nagasawa K Davidson FT Lloyd AC Webber ME. Impacts of renewable hydrogen production from wind energy in electricity markets on potential hydrogen demand for light-duty vehicles. Appl Energy. 2019;235:1001-1016. DOI: 10.1016/j.apenergy.2018.10.067.

  • [41] Blanco H Nijs W Ruf J Faaij A. Potential for hydrogen and power-to-liquid in a low-carbon EU energy system using cost optimization. Appl Energy. 2018;232:617-639. DOI: 10.1016/j.apenergy.2018.09.216.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 60 60 10
PDF Downloads 44 44 9