Environmentally Friendly Fuel Usage: Economic Margin of Feasibility

Open access

Abstract

In the world there are two main problems concerning energy and ecology. Despite the crude oil price fluctuation, it has tended to increase. Moreover fossil fuel burning emits hazard compounds, including greenhouse gas. To solve them alternative fuels for vehicle have to be used. In due to properties, their usage impacts on the engine efficiency. The alternative fuel usage needs additional investment costs on the vehicle engines adaptation and fuel supply infrastructure. So, decisions must be based on mathematical apparatus. Three submodels were used in the suggested mathematical model: energy and economic indicator for fuels; energy and economic indicator for vehicles; criteria for investment projects. As a criterion of investment projects the profitability index has been grounded. The mathematical model and the algorithm for determining the feasibility of the alternative fuel utilization have been developed. The proposed algorithm includes the following stages: calculation of the fuel energy cost; calculation of the criteria for vehicles; determining the maximum value of investments; making decisions. Biofuels and gaseous fuels for some countries have been studied. The economic attractiveness of the alternative transport fuels has been presented. According to mathematical modeling, gaseous fuels are more economically attractive compared with liquid biofuels. Among gaseous fuels, LPG has a higher economic efficiency. The economic margin of alternative fuel application feasibility has been determined.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Williams JL. WTRG Economics. London; 2017. http://wtrg.com/.

  • [2] Report from the Commission to the European Parliament the Council the European Economic and Social Committee and the Committee of the Regions. Renewable Energy Progress Report. Brussels 01.02.2017 COM(2017) 57 final. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52017DC0057&from=EN.

  • [3] Bates J. Biomethane for Transport from Landfill and Anaerobic Digestion. Final report. Report for the Department for Transport (PPRO 04/91/63). Ricardo-AEA. 06/03/2015. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/416002/biomethane-for-transport.pdf.

  • [4] Bereczky A. Alternative fuels and technologies for compression ignition internal combustion engines. J KONES. 2012:19(4):1-9. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ8-0020-0005/c/httpwww_bg_utp_edu_plartkones42012j20o20kones20201220no20420vol_201920bereczky.pdf.

  • [5] Hall CAS Lambert JG Balogh SB. EROI of different fuels and the implications for society. Energy Policy. 2014;64:141-152. DOI: 10.1016/j.enpol.2013.05.049.

  • [6] Kalghatgi G. Is it really the end of internal combustion engines and petroleum in transport? Appl Energy. 2018;225:965-974. DOI: 10.1016/j.apenergy.2018.05.076.

  • [7] Use of gaseous fuels in transport. REA Renewable Transport Group. 2016. https://www.r-e-a.net/upload/rea_use_of_gaseous_fuels_in_transport_report-_april_2016-_final.pdf.

  • [8] Jaffe AM Dominguez-Faus R Lee A Medlock K Parker N. Scheitrum D et al. Exploring the role of natural gas in U.S. trucking. UC Davis Institute of Transportation Studies. 2015: 63. UCD-ITS-RR-15-05. https://www.ge.com/sites/default/files/2015%2002%20Exploring%20the%20Role%20of%20Natural%20Gas%20in%20US%20Trucking.pdf.

  • [9] Study of Opportunities for Natural Gas in the Transportation Sector. Marbek. 2010; project ID: 29064: 78. http://www.xebecinc.com/pdf/Marbek-NGV-Final-Report-April-2010.pdf.

  • [10] Mikolajková-Alifov M Pettersson F Björklund-Sänkiaho M Saxén HA. Model of optimal gas supply to a set of distributed consumers. Energies. 2019;12(3):351. DOI: 10.3390/en12030351.

  • [11] Kalinichenko A Havrysh V Perebyynis V. Evaluation of biogas production and usage potential. Ecol Chem Eng S. 2016;23(3): 387-400. DOI: 10.1515/eces-2016-0027.

  • [12] Gahleitner G Lindorfer J. Alternative fuels for mobility and transport: Harnessing excess electricity from renewable power sources with power-to-gas. ECEEE Summer Study Proc. 2013;4-133-13:1007-1018. http://proceedings.eceee.org/papers/proceedings2013/4-133-13_Gahleitner.pdf.

  • [13] Gabbar HA Ayoub N. Integrated modeling for optimized regional transportation with compressed natural gas fuel. Alexandria Eng J. 2016;55(1):533:545. DOI: 10.1016/j.aej.2015.10.007.

  • [14] Topal O Nakir I. Total cost of ownership based economic analysis of diesel CNG and electric bus concepts for the public transport in Istanbul City. Energies. 2018;11(9):2369. DOI: 10.3390/en11092369.

  • [15] Hall CAS Cleveland CJ. EROI: definition history and future implications. ASPO-US Conf Denver. 2005. www.esf.edu/efb/hall/talks/EROI6a.ppt.

  • [16] Fernández-Dacosta C Shen L Schakel W Ramirez A Kramer GJ. Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector. Appl Energy. 2019;236:590-606. DOI: 10.1016/j.apenergy.2018.11.055.

  • [17] Mofijur M Rasul MG Hyde J Bhuyia MMK. Role of biofuels on IC engines emission reduction. Energy Proc. 2015;75:886-892. DOI: 10.1016/j.egypro.2015.07.211.

  • [18] Chris LF. The prospects for natural gas as a transport fuel in Europe. OIES Paper. 2014;84:1-109. https://www.oxfordenergy.org/wpcms/wp-content/uploads/2014/03/NG-84.pdf.

  • [19] Chikishev E Ivanov A Anisimov I. Chainikov D. Prospects of and problems in using natural gas for motor transport in Russia. VII Int Sci Pract Conf “Innovative Technologies in Engineering”. IOP Conf. Series: Mater Sci Eng. 2016;142(012110):1-8. DOI: 10.1088/1757-899X/142/1/012110.

  • [20] Llera E Romeo LM Bailera M Osorio JL Ebro CR de Luna M. Exploring the integration of the power to gas technologies and the sustainable transport. Intern J Energ Prod Manage. 2018:3(1):8. DOI: 10.2495/EQ-V3-N1-1-9.

  • [21] Patel AB Patel KA Umrigar PB Joshi A Patel VC. Effect of ignition energy on performance and emission of dedicated 4-stroke single cylinder S.I engine fuelled with biogas - An experimental investigation. Int J Sci Technol Eng. 2015;1(11):391-399. http://www.ijste.org/articles/IJSTEV1I11096.pdf.

  • [22] Ayade M Latey AA. Performance and emission characteristics of biogas - petrol dual fuel in SI engine. Int J Mechanic Eng Technol (IJMET). 2016;7(2):45-54. http://www.iaeme.com/MasterAdmin/uploadfolder/IJMET_07_02_006/IJMET_07_02_006.pdf.

  • [23] Liu J Yang F Wang H Ouyang M Hao S. Effects of pilot fuel quantity on the emissions characteristics of a CNG/diesel dual fuel engine with optimized pilot injection timing. Appl Energy. 2013;110:201-206. DOI: 10.1016/j.apenergy.2013.03.024.

  • [24] Kapilan N Ashok Babu TP Reddy RP. Improvement of performance of dual fuel engine operated at part load. Int J Automot Mech Eng (IJAME). 2010;2:200-210. https://core.ac.uk/download/pdf/35361474.pdf.

  • [25] Senthilkumar K Vivekanandan S. Investigating the biogas as secondary fuel for Ci engine. Int J Appl Environ Sci (IJAES). 2016;11(1):155-163. https://www.ripublication.com/ijaes16/ijaesv11n1_12.pdf.

  • [26] Subramanian KA Singal SK Saxena M Singhal S. Utilization of liquid biofuels in automotive diesel engines: An Indian perspective. J Biomass Bioenergy. 2005:29:65-72. DOI: 10.1016/j.biombioe.2005.02.001.

  • [27] Yuen P Villaire W Beckett J. Automotive materials engineering challenges and solutions for the use of ethanol and methanol blended fuels. SAE Technical Paper. 2010-01-0729. DOI: 10.4271/2010-01-0729.

  • [28] Rose K Hamje H Jansen L Fittavolini C Clark R Dolores M et al. Impact of FAME content on the regeneration frequency of diesel particulate filters (DPFs). SAE Int. J. Fuels Lubr. 2014;7(2):563-570. DOI: 10.4271/2014-01-1605.

  • [29] Kuglarz M Grübel K. Integrated production of biofuels and succinic acid from biomass after thermochemical pretreatments. Ecol Chem Eng S. 2018;25(4):521-536. DOI: 10.1515/eces-2018-0034.

  • [30] Kalinichenko A Pasichnyk L Osypenko S Patyka V Usmanova H Bacterial diseases of bioenergy plants. Ecol Chem Eng A. 2017:24(2):169-191. DOI: 10.2428/ecea.2017.24(2)16.

  • [31] Huliaieva H Tokovenko I Maksin V Kaplunenko V Kalinichenko A. Effect of nanoaquacitrates on physiological parameters of Fodder Galega infected with phytoplasma. Ecol Chem Eng S. 2018:25(1):153-158. DOI: 10.1515/eces-2018-0011.

  • [32] Havrysh V. Features of determination of discount rate for energy producing investment projects. Ukrainian Black Sea Region Agrarian Sci. 2014;3(79-1):23-35. http://visnyk.mnau.edu.ua/en/n79v3r2014t1havrysh/.

  • [33] Ekman M. Biomethane in Sweden: Governmental Incentives and Market Trends. Glob Biomethane Congr. 2012. http://european-biogas.eu/wp-content/uploads/files/2013/11/5-Michelle_Ekman_Governmental-Incentives-and-Market-Trends_Developments-in-the-Swedish.pdf.

  • [34] Rydberg T Belhaj M Bolin L Lindblad M Sjödin Å Wolf C. Market conditions for biogas vehicles. Swedish Environmental Research Institute Ltd.; 2010. http://www.ivl.se/download/18.343dc99d14e8bb0f58b75d6/1446478742726/B1947.pdf.

  • [35] IEA Bioenergy Task 37 - Country Reports Summary 2015. IEA Bioenergy. 2016. http://task37.ieabioenergy.com/country-reports.html?file=files/daten-redaktion/download/publications/country-reports/Summary/IEABioerg+T37CRS+2015+Final.pdf.

  • [36] Wrońska I Cybulska K. Quantity and quality of biogas produced from the poultry sludge optimized by filamentous fungi. Ecol Chem Eng S. 2018;25(3): 395-404. DOI: 10.1515/eces-2018-0027.

  • [37] Geršl M Kanduč T Matýsek D Šotnar M Mareček J. The role of mineral phases in the biogas production technology. Ecol Chem Eng S. 2018;25(1):51-59. DOI: 10.1515/eces-2018-0003.

  • [38] Biomethane in Transport. European Biogas Association. Brussels. 2016. http://european-biogas.eu/wp-content/uploads/2016/05/BiomethInTransport.pdf.

  • [39] Biofuel barometer. EurObserv’ER. July 2016. https://www.eurobserv-er.org/pdf/biofuels-barometer-2016-en/.

  • [40] Current Super and Diesel Prices. All Petrol Stations in Germany. https://gasoline-germany.com/preise-deutschland.phtml/statistics.

  • [41] Global Petrol Prices. Access mode: http://www.globalpetrolprices.com/lpg_prices/. April 2017.

  • [42] АZS.UA. http://azs.uapetrol.com/. April 2015.

  • [43] Petroleum & Other Liquids. Independent Statistics & Analysis. U.S. Energy Information Administration. 2017. https://www.eia.gov/petroleum/gasdiesel/.

  • [44] Energy and Environmental Affairs. 2017. http://www.mass.gov/eea/energy-utilities-clean-tech/home-auto-fuel-price-info/gasoline-and-diesel-fuel-prices.html.

  • [45] Fuel prices in Sweden: petrol/gasoline and diesel. Sweden tips. 2017. http://www.swedentips.se/travel-info/fuel-prices/.

  • [46] CNG Europe. 2017. http://cngeurope.com/.

  • [47] Petrol diesel fuel gas prices. 2017.http://www.benzin-price.ru/price.php?region_id=77.

  • [48] Current Fuel Prices in Europe. 2017. www.fuel-prices-europe.info.

  • [49] CNG Europe. 2017. http://cngeurope.com/countries/france/.

  • [50] Berg H Burger A Thiele K. Environmentally harmful subsidies in Germany. Federal Environment Agency. 2010. https://www.umweltbundesamt.de/sites/default/files/medien/publikation/long/3896.pdf.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 77 77 23
PDF Downloads 50 50 13