Analysis of Combined Sewer Flow Storage Scenarios Prior to Wastewater Treatment Plant

Open access


Combined sewer systems in cities are increasingly equipped with additional storage facilities or other installations necessary for keeping the wastewater treatment plants from overloading during wet weather and reducing combined sewer overflows into receiving waters. Effective methods for reducing such negative phenomena include the temporary storage of wet weather flow in an end-of-pipe separate tank or in a sewer system. In this paper, four scenarios of wastewater storage for the Group Wastewater Treatment Plant (GWWTP) in Lodz (Poland) have been analysed: a storage in a separate single tank located in GWWTP, a storage in the bypass channel in GWWTP, in-sewer storage, and a combination of the aforementioned variants, also with real time control (RTC) system introduced. The basic calculations were performed using the EPA’s SWMM software for the period of 5 years (2004-2008). The chosen solution - storage in a separate storage tank - has been verified based on the inflow dataset from the years 2009-2013. The specific volume of the separate storage tank should be at least 22 m3 per hectare of impervious catchment area, but it could be reduced if additional in-sewer storage with RTC were introduced. Both options allow the effective protection of receiving waters against discharge of untreated sewage during wet weather.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [l] Ahnert M Tränckner J Günthe N Hoeft S Krebs P. Water Sci Technol. 2009;60:1875-1883. DOI:10.2166/wst.2009.514.

  • [2] Brzezinska A Zawilski M. Ochr Śr. 2010;32:21-26.

  • [3] Anta J Beneyto M Cagiao J Temprano J Piňeiro J González J et al. Analysis of combined sewer overflow spill frequency/volume in north of Spain. Proc Congress - Int Assoc Hydraulic Res. 2007;32:458-467.

  • [4] Todeschini S Papiri S Ciaponi C. J Environ Manage. 2012;101:33-45. DOI: 10.1016/j.jenvman.2012.02.003.

  • [5] Calabrò PS Viviani G. Water Res. 2006;40(1):83-90. DOI: 10.1016/j.watres.2005.10.025.

  • [6] Temprano J Tejero I. Environ Technol. 2002;23:663-675. DOI: 10.1080/09593332308618381.

  • [7] Zawilski M Sakson G. Optimal control strategies for stormwater detention tanks. 10th Int. Conf. on Urban Drainage. Copenhagen/Denmark; 2005.

  • [8] Rozporządzenie Ministra Środowiska z 18 listopada 2014 r. w sprawie warunków jakie należy spełnić przy wprowadzaniu ścieków do wód lub do ziemi oraz w sprawie substancji szczególnie szkodliwych dla środowiska wodnego (Dz.U. 2014 poz. 1800). (Regulation of the Minister of the Environment of November 18 2014 on the conditions to be met when introducing sewage into waters or into the ground and on substances particularly harmful to the aquatic environment (Journal of Laws 2014 1800)).

  • [9] Lau J Butler D Schütze M. Urban Wat. 2002;4:181-189. DOI: 10.1016/S1462-0758(02)00013-4.

  • [10] Llopart-Mascaró A Farreny R Gabarrell X Rieradevall J Gil A Martinez M et al. Urban Wat J. 2015;12:219-228. DOI: 10.1080/1573062X.2013.868499.

  • [11] Guillon A Kovacs Y Pascal O Ruszniewski M. Evaluating on-line storage in the Haut-de-Seine Departement sewer network in order to reduce overflows to the river Seine. 11th Int. Conf Urban Drainage Edinburgh Scotland UK; 2008.

  • [12] Ashley R Dudley J Vollertsen J Saul AJ Jack A Blanksby JR. Water Sci Technol. 2002;45(3):239-246.

  • [13] Jack AG Ashley R. Water Sci Technol. 2002;45(3):247-253.

  • [14] Vezzaro L Christensen ML Thirsing C Grum M Mikkelsen PS. Procedia Eng. 2014;70:1707-1716. DOI: 10.1016/j.proeng.2014.02.188.

  • [15] Dirckx G Schütze M Kroll S Thoeye Ch De Gueldre G Van De Steene B. Urban Wat J. 2011;8:367-377. DOI:10.1080/1573062X.2011.630092.

  • [16] Beeneken T Erbe V Messmer A Reder C Rohlfing R Scheer M et al. Urban Wat J. 2013;10:293-299. DOI: 10.1080/1573062X.2013.790980.

  • [17] Butler D Davies JW. Urban Drainage. London: E&FN SPON; 2011. ISBN: 0203149696.

  • [18] Campisano AP Creaco E Modica C. Improving combined sewer overflows and treatment plant performance by real-time control operation. In: Enhancing Urban Environment Upgrading and Restoration IV. Earth and Environmental Sciences 43. NATO Science Series 2004;123-138. ISBN: 1402026927.

  • [19] Bolmstedt J Olsson G. Water Sci Technol. 2005;52(12):113-121.

  • [20] Fuchs L Beeneken T Pfannhauser G Steinwender A. Experience with the implementation of a real-time control strategy for the sewer system of the Vienna city. 10th Int. Conf. Urban Drainage. Copenhagen/Denmark; 2005.

  • [21] Leitão JP Carbajal JP Rieckermann J Simões NE Sá Marques A de Sousa LM. J Hydrol. 2018;556:371-383. DOI: 10.1016/j.jhydrol.2017.11.020.

  • [22] Jean M-È Duchesne S Pelletier G Pleau M. J Hydrol. 2018;565:559-569. DOI: 10.1016/j.jhydrol.2018.08.064.

  • [23] Wang J Guo Y. Water Resour Res. 2018;54(5):3357-3375. DOI: 10.1029/2017WR022286.

  • [24] Stec A Słyś D. Ecol Chem Eng S. 2014;21(2):215-228. DOI: 10.2478/eces-2014-0017.

  • [25] Szetela RW. Treatment plant simulator SymOs v.3.0. Manual. Wrocław: Eco-Consult;1999.

  • [26] Maruejouls T Lessard P Wipliez B Pelletier G. Vanrolleghem PA. Water Sci Technol. 2011;64:1898-1905. DOI: 10.2166/wst.2011.763.

  • [27] Montalto F Behr Ch Alfredo K Wolf M Arye M Walsh M. Landsc Urban Plan. 2007;82:117-131. DOI: 10.1016/j.landurbplan.2007.02.004.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 235 142 15
PDF Downloads 197 118 9