Heat Balance of Horizontal Ground Heat Exchangers

Open access


This work refers to the modelling of heat transfer in horizontal ground heat exchangers. For different conditions of collecting heat from the ground and different boundary condition profiles of temperature in the ground were found, and temporal variations of heat flux transferred between the ground surface and its interior were determined. It was taken into account that this flux results from several different mechanisms of heat transfer: convective, radiative, and that connected with moisture evaporation. It was calculated that ground temperature at great depths is greater than the average annual ambient temperature.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Florides G Kalogirou S. Renew Energy. 2007;32:2461-2478. DOI: 10.1016/j.renene.2006.12.014.

  • [2] Soni SK Pandey M Bartaria VN. Renew Sust Energy Rev. 2015;47:83-92. DOI: 10.1016/j.rser.2015.03.014.

  • [3] Adamovsky D Neuberger P Adamovsky R. Energy Buildings. 2015;92:107-115. DOI: 10.1016/j.enbuild.2015.01.052.

  • [4] Dasare RR Saha SK. Appl Thermal Eng. 2015;85:252-263. DOI: 10.1016/j.applthermaleng.2015.04.014.

  • [5] Naylor S Ellett KM Gustin AR. Renew Energy. 2015;81:21-30. DOI: 10.1016/j.renene.2015.03.006.

  • [6] Gonzalez RG Verhoef A Vidale PL Main B Gan G Wu Y. Renew Energy. 2012;44:141-153. DOI: 10.1016/j.renene.2012.01.080.

  • [7] Chong CSA Gan G Verhoef A Garcia RG Vidale PL. Appl Energy. 2013;104:603-610. DOI: 10.1016/j.apenergy.2012.11.069.

  • [8] Go G-H Lee S-R Yoon S Kim M-J. Appl Energy. 2016;162: 330-345. DOI: 10.1016/j.apenergy.2015.10.113.

  • [9] Kim M-J Lee S-R Yoon S Go G-H. Geothermics. 2016;60:134-143. DOI: 10.1016/j.geothermics.2015.12.009.

  • [10] Xiong Z Fisher DE Spitler JD. Appl Energy. 2015;141:57-69. DOI: 10.1016/j.apenergy.2014.11.058.

  • [11] Yoon S Lee S-R Go G-H. Energy Buildings. 2015;105:100-105. DOI: 10.1016/j.enbuild.2015.07.054.

  • [12] Herb WR Janke B Mohseni O Stefan HG. J Hydrol. 2008;356:327-343. DOI: 10.1016/j.hydrol.2008.04.020.

  • [13] Nam Y Ooka R Hwang S. Energy Buildings. 2008;40:2133-2140. DOI: 10.1016./j.enbuild.2008.06.004.

  • [14] Fujii H Nishi K Komaniwa Y Chou N. Geothermics. 2012;41:55-62. DOI: 10.1016/j.geothermics.2011.09.002.

  • [15] Fujii H Yamasaki S Maehara T Ishikami T Chou N. Geothermics. 2013;47:61-68. DOI: 10.1016/j.geothermics.2013.02.006.

  • [16] de Jesus Freire A Alexandre JLC Silva VB Couto ND Rouboa A. Appl Thermal Eng. 2013;51:1124-1134. DOI: 10.1016/j.applthermaleng.2012.09.45.

  • [17] Bortoloni M Bottarelli M Su Y. Appl Thermal Eng. 111;2017:1371-1377. DOI: 10.1016/j.applthermaleng.2016.05.063.

  • [18] Badache M Eslami-Nejad P Ouzzane M Aidoun Z. Renew Energy. 2016;85:436-444. DOI: 10.1016/j.renene.2015.06.20.

  • [19] Ouzzane M Eslami-Nejad P Badache M Aidoun Z. Geothermics. 2015;53:379-384. DOI: 10.1016/j.geothermics.2014.08.001.

  • [20] Kupiec K Larwa B Gwadera M. Appl Thermal Eng. 2015;75:270-276. DOI: 10.1016/applthermaleng.2014.10.003.

  • [21] Kupiec K Larwa B Gwadera M Komorowicz T. Przemysł Chem. 2016;95:1000-1006. DOI: 10.15199/62.2016.10.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 201 160 2
PDF Downloads 146 110 2