Kinetics of Vinyl Acetate Biodegradation by Pseudomonas fluorescens PCM 2123

Open access

Abstract

The microbial degradation of vinyl acetate (VA) by Pseudomonas fluorescens PCM 2123 strain was studied in both batch and continuous modes. The purpose of the experiments was to determine the kinetic model of the cell growth and biodegradation rate of vinyl acetate (VA), which was the sole carbon and energy source for tested microorganisms. The experiments, carried out in a batch reactor for several initial concentrations of growth substrate in the liquid phase ranging from 18.6 to 373 gsubstrate·m−3 (gs·m−3) made it possible to choose the kinetic model and to estimate its constants. The Haldane inhibitory model with the values of constants: μm = 0.1202 h−1, KS = 17.195 gs·m−3, Ki = 166.88 gs·m−3 predicted the experimental data with the best accuracy. To set the parameters of maintenance metabolism it was necessary to carry out a series of continuous cultures at different dilution rates (0.05 to 0.072 h−1) and concentrations of VA in the liquid supplied to the chemostat ranging from 30.9 to 123.6 gs·m−3. The obtained data-base enabled to determine the coefficient for maintenance metabolism (me = 0.0251 gsubstrate gcell dry weight−1·h−1 (gs·gcdw−1·h−1)) as well as the maximal and observed values of yield coefficients, Yxs M = 0.463 gcdw·gs−1 and (Yxs)obs = 0.411 gcdw·gs−1, respectively. The developed kinetics was verified by comparison of the computed and obtained in batch experiments profiles of changes in biomass and growth substrate concentrations.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Sakunthala M Sridevi V Chadana Lakshmi MVV Vijay Kumar K. A review: the description of three different biological filtration processes and economic evaluation. JECET. 2013;2:91-99. https://www.jecet.org/download_frontend.php?id=63&table=Archive.

  • [2] Cheng Y He H Yang Ch Zeng Ch Li X Chen H Yu G. Challenges and solutions for biofiltration of hydrophobic volatile organic compounds. Biotechnol Adv. 2016;34;1091-1102. DOI: 10.1016j.biotechadv.2016.06.007.

  • [3] Zdeb M Lebiocka M. Microbial removal of selected volatile organic compounds from the model landfill gas. Ecol Chem Eng S. 2016;23:215-228. DOI: 10.1515/eces-2016-0014.

  • [4] Świerczyńska A Bohdziewicz J Puszczało E. Treatment of industrial wastewater in the sequential membrane bioreactor. Ecol Chem Eng S. 2016;23:285-295.DOI: 10.1515/eces-2016-0020.

  • [5] Ferdowsi M Ramirez AA Jones JP Heitz M. Elimination of mass transfer and kinetic limited organic pollutants in biofilters: A review. Int Biodeter Biodegr. 2017;119;336-348. DOI: 10.1016/j.ibiod.2016.10.015.

  • [6] Federal Institute for Occupational Safety and Health Division for Chemicals and Biocides Regulation Vinyl Acetate - Summary Risk Assessment Report. Dortmund (Germany): 2008. https://echa.europa.eu/documents/10162/6434698/orats_summary_vinylacetate_en.pdf.

  • [7] Vinyl Acetate Safe Handling Guide. Washington: Vinyl Acetate Council; 2010. http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_0916/0901b803809160d4.pdf?filepath=vam&fromPage=GetDoc.

  • [8] http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@rn+108-05-4).

  • [9] Jakoby WB Narrod SA. Aldehyde oxidation IV. An aldehyde buffer for growth studies. J Bacteriol. 1959;77:410-413. https://jb.asm.org/content/jb/77/4/410.full.pdf.

  • [10] Simon P Filser JG Bolt HM. Metabolism of pharmacokinetics of vinyl acetate. Arch Toxicol. 1985;57:191-195. https://link.springer.com/content/pdf/10.1007/BF00290886.pdf.

  • [11] Bogdanffy MS Sarangapani R Plowchalk DR Jarabek A Andersen ME. A biologically based risk assessment for vinyl acetate-induced cancer and noncancer toxicity. Toxicol Sci. 1999;51:19-35. DOI: 10.1093/toxsci/51.1.

  • [12] Bogdanffy MS Taylor ML. Kinetics of nasal carboxylesterase-mediated metabolism of vinyl acetate. Drug Metabol Dispos. 1993;21:1107-1111. http://dmd.aspetjournals.org/content/21/6/1107.short.

  • [13] Morris JB Symanowicz P Sarangapani R. Regional distribution and kinetics of vinyl acetate hydrolysis in the oral cavity of the rat and mouse. Toxicol Lett. 2002;126:31-99. DOI: 10.1016/S0378-4274(01)00442-8.

  • [14] Hatanaka Y Inoue Y Murata K Kimura A. A isolation and characterization of carboxylesterase from vinyl acetate-assimilating bacterium isolated from soil. J Ferment Bioeng. 1989;67:14-19. DOI: 10.1016/0922-338X(89)90079-2.

  • [15] Nieder M Sunarko B Meyer O. Degradation of vinyl acetate by soil sewage sludge and the newly isolated aerobic bacterium V2. Appl Environ Microbiol. 1990;56:3023-3028. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC184893/.

  • [16] Lara-Mayorga I Duran-Hinojosa U Arana-Cuenca A Monroy-Hermosillo O Ramirez-Vives F. Vinyl acetate degradation by Brevibacillus agri isolates from a slightly aerated methanogenic reactor. Environ Technol. 2010;31:1-6. DOI: 10.1080/09593330903260904.

  • [17] Greń I Gąszczak A Guzik U Bartelmus G Łabużek S. A comparative study of biodegradation of vinyl acetate by environmental strains. Ann Microbiol. 2011;61:257-265. DOI: 10.1007/s13213-010-0130-4.

  • [18] Szczyrba E Greń I Bartelmus G. Enzymes involved in vinyl acetate decomposition by Pseudomonas fluorescens PCM 2123 strain. Folia Microbiol. 2014;59:99-105. DOI: 10.1007/s12223-013-0268-0.

  • [19] Moser A. Bioprocess Technology Kinetics and Reactors. New York: Springer-Verlag; 1988. DOI: 10.1007/978-1-4613-8748-0.

  • [20] EPA On-line Tools for Site Assessment Calculation. http://www3.epa.gov/ceampubl/learn2model/part-two/onsite/esthenry.html.

  • [21] Pirt SJ. The maintenance energy of bacteria in growing cultures. Proc R Soc London B. 1965;163: 224-231.

  • [22] Schuler ML Kargi F. Bioprocess Engineering. New Jersey: Prentice Hall PTR; 2002. ISBN 9780130819086.

  • [23] Takeuchi M Weiss N Schumann P Yokota A. Leucobacter komagatae gen. nov. sp. nov. a new aerobic Gram-positive nonsporulating rod with 2 4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol. 1996;4:967-971. DOI:10.1099/00207713-46-4-967.

  • [24] Bakhshi Z Najafpour G Kariminezhad E Pishgar R Mousavi N Taghizade T. Growth kinetic models for phenol biodegradation in a batch culture of Pseudomonas putida. Environ Technol. 2011;32:1835-1841. DOI: 10.1080/09593330.2011.562925.

  • [25] Singh RK Kumar Sh Kumar S Kumar A. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J. 2008;40:293-303. DOI: 10.1016/j.bej.2007.12.

  • [26] Agarry SE Solomon BO. Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescens. IJEST. 2008;5:223-232. http://www.bioline.org.br/pdf?st08026.

  • [27] Sherrod PH. Nonlinear Regression Analysis Program (NLREG). Nashville: TN; 2010. www.nlreg.com.

  • [28] Nweke CO Okpokwasili GC. Kinetics of growth and phenol degradation by Pseudomonas species isolated from petroleum refinery wastewater. Int J Biosci. 2014;4:28-37. DOI: 10.12692/ijb/4.7.28-37.

  • [29] Molin G. Measurement of the maximum specific growth rate in chemostat of Pseudomonas spp. with different abilities for biofilm formation. Eur J Appl Microbiol Biotechnol. 1983;18:303-307. DOI: 10.1007/BF00500496.

  • [30] Hao O Kim M Seagren E Kim H. Kinetics of phenol and chlorophenol utilization by Acinetobacter species. Chemosphere. 2002;46:797-807. DOI: 10.1016/S0045-6535(01)00182-5.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 236 172 3
PDF Downloads 172 119 5