Characteristics of Polymeric Ultrafiltration Membranes Produced with the Use of Graphene Oxide

Open access

Abstract

This article describes a method for producing polymeric membranes by adding carbon nanostructures in the form of graphene oxide (GO). The reference membrane (having typical composition) was formed via phase inversion, using polyvinylidene fluoride (PVDF) dissolved in dimethylacetamide (DMAC). The polymeric matrix was additionally enriched with a plasticizer, i.e. polyethylene glycol (PEG). Afterwards, graphene oxide ultrasonically dispersed in dimethylacetamide was added to basic matrix. The membranes were further compared with one another by measuring their contact angle and hydrodynamics. The results were compared with the literature reports. The transport properties of the membranes were assessed with experimental ultrafiltration equipment (KOCH Membrane System). Also, their permeate flux and mass transfer resistance were determined.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Korus I. Galvanic wastewater treatment by means of anionic polymer enhanced ultrafiltration. Ecol Chem Eng S. 2012;19(1):19-27. DOI: 10.2478/v10216-011-0002-2.

  • [2] Padil VVT Wacławek S Černík M. Green synthesis: nanoparticles and nanofibres based on tree gums for environmental applications. Ecol Chem Eng S. 2016;23(4):533-557. DOI: 10.1515/eces-2016-0038.

  • [3] Yan L Hong S Li LM Li YS. Application of the Al2O3-PVDF nanocomposite tubular ultrafiltration (UF) membrane for oily wastewater treatment and its antifouling research. Sep Purif Technol. 2009;66(2):347-352. DOI: 10.1016/j.seppur.2008.12.015.

  • [4] Bodzek M. Inorganic micropollutants removal by means of membrane processes - state of the art. Ecol Chem Eng S. 2013;20(4):633-658. DOI: 10.2478/eces-2013-0044.

  • [5] Muller NC Burgen B Kueter V Luis P Melin T Pronk W et al. Nanofiltration and nanostructured membranes - Should they be considered nanotechnology or not? J Hazard Mater. 2012;211-212:275-280. DOI: 10.1016/j.jhazmat.2011.10.096.

  • [6] Sadeghi M Semsarzadeh MA Moadel H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nanoparticles. J Membrane Sci. 2009;331:21-30. DOI: 10.1016/j.memsci.2008.12.073.

  • [7] Hong J He Y. Effects of nano sized zinc oxide on the performance of PVDF microfiltration membranes. Desalination. 2012;302:71-79. DOI: 10.1016/j.desal.2012.07.001.

  • [8] Blus M Tomczak E Tylman M. Effect of carbon nanotubes addition on the hydrodynamics of polymer membranes. Proc ECOpole. 2015;9(2):541-549. DOI: 10.2429/proc.2015.9(2)063.

  • [9] Blus M Tomczak E. Hydrodynamics of ultrafiltration polymer membranes with carbon nanotubes. Desalin Water Treat. 2016;64:298-301 DOI: 10.5004/dwt.2016.11405.

  • [10] Nicolai A Sumpter BG Meunier V. Tunable water desalination across graphene oxide framework membrane. Phys Chem Chem Phys. 2014;16(18):8646-8654. DOI: 10.1039/c4cp01051e.

  • [11] Joshi RK Carbone P Wang FC Krevets VG Su Y Grigorieva IV et al. Precise and ultrafast molecular sieving trough graphene oxide membranes. Science. 2014;343:752-754. DOI: 10.1126/science.1245711.

  • [12] Sun P Zhu M Wang K Zhong M Wei J Wu D et. al. Selective ion penetration of graphene oxide membranes. Nano. 2013;7(1):428-437. DOI: 10.1021/nn304471w.

  • [13] Putz KW Compton OC Palmeri MJ Nguyen ST Brinson LC. High nanofiller content graphene oxide-polymer nanocomposites via vacuum assisted self assembly. Adv Funct Mater. 2010;20(19):3322-3329. DOI: 10.1002/adfm.201000723.

  • [14] Zhu Ch Li H Zeng CX Wang EG Meng S. Quantized water transport: Ideal desalination through graphene-4 membrane. Sci Rep. 2013;3:3163. DOI: 10.1038/srep03163.

  • [15] Jiang DE Cooper VR Dai S. Porous graphene as the ultimate membrane for gas separation. Nano Lett. 2009;9:4019-4024. DOI: 10.1021/nl9021946.

  • [16] Suk ME Aluru N. Water transport through ultrathin graphene. J Phys Chem Lett. 2010;1:1590-1594. DOI: 10.1021/jz100240r.

  • [17] Chua CK Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev. 2014;743(1):291-312. DOI: 10.1039/c3cs60303b.

  • [18] Han Y Jiang Y Gao Ch. High-Flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes. ACS Appl Mater Interfaces. 2015;7(15):8147-8155. DOI: 10.1021/acsami.5b00986.

  • [19] Hummers WS Offeman RE. Preparation of graphitic oxide. J Amer Chem Soc. 1958;80(6)1:339. DOI: 10.1021/ja01539a017.

  • [20] Dikin DA Stankovich S Zimney EJ Piner RD Dommett GH Evmenenko G et al. Preparation and characterization of graphene oxide paper. Nature. 2007;26448(7152):457-60. DOI: 10.1038/nature06016.

  • [21] Erickson K Erni R Lee Z Alen N Gannett W Zeltt A. Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv Mater. 2010;22:4467. DOI: 10.1002/adma.201000732.

  • [22] Wang Y Li Z Wang J Li J Lin Y. Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011;295:205-212. DOI: 10.1016/j.tibtech.2011.01.008.

  • [23] Nair RR Wu HA Jayaram PN Grigorieva IV Geim AK. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science. 2012;3356067:442-444. DOI: 10.1126/science.1211694.

  • [24] You JM Kim D Kim SK Kim SM Han SH Jeon S. Novel determination of hydrogen peroxide by electrochemically reduced graphene oxide grafted with aminothiophenol-Pd nanoparticles. Sensor Actuat B-Chem. 2013;178:450-457. DOI: 10.1016/j.snb.2013.01.006.

  • [25] Gao W Majumder M Alemany LB Narayanan TN Ibarra MA Pradhan BK et al. Engineered graphite oxide materials for application in water purification. ACS Appl Mater Interfaces. 2011;3(6):1821. DOI: 10.1021/am200300u.

  • [26] Huang H Ying Y Peng X. Graphene oxide nanosheet: an emerging star material for novel separation membranes. J Mat Chem A. 2014;2:13772-13782. DOI: 10.1039/C4TA02359E.

  • [27] Huang K Liu G Lou Y Dong Z Shen J Jin W. A graphene oxide membrane with highly selective molecular separation of aqueous organic solution. Angew Chem Int Ed. 2014:6929-6932. DOI: 10.1002/anie.201401061.

  • [28] Jin F Zhang Ch Li Z Su R Qi W Yang Q-H et al. High-performance ultrafiltration membranes based on polyethersulfone-graphene oxide composites. RSC Adv. 3. 2013:21394-21397. DOI: 10.1039/c3ra42908c.

  • [29] Pathipati SR Pavlica E Treossi E Rizzoli R Veronese GP Palermo V et al. Modulation of charge transport properties of reduced graphene oxide by submonolayer physisorption of an organic dye. Org Electron. 2013;14:1787-1792. DOI: 10.1016/j.orgel.2013.03.005.

  • [30] Zhang W Zhou C Zhou W Lei A Zhang Q Wan Q et al. Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bull Environ Contam Toxicol. 2011;87:86. DOI: 10.1007/s00128-011-0304-1.

  • [31] Yang ST Chen S Chang Y Cao A Liu Y Wang H. Removal of methylene blue from aqueous solution by graphene oxide. J Colloid Interface Sci. 2011;359:24-29. DOI: 10.1016/j.jcis.2011.02.064.

  • [32] Li Y Du Q Liu T Peng X Wang J Sun J et al. Comparative study of methylene blue dye adsorption onto activated carbon graphene oxide and carbon nanotubes. Chem Eng Res Des. 2013;91:361-368. DOI: 10.1016/j.cherd.2012.07.007.

  • [33] Ramesha GK Kumar AV Muralidhar HB Sampath S. Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. J Colloid Interface Sci. 2011;361:270-277. DOI: 10.1016/j.jcis.2011.05.050.

  • [34] Sharma P Das MR. Removal of a cationic dye from aqueous solution using graphene oxide nanosheets: investigation of adsorption parameters. J Chem Eng Data. 2013;58:151-158. DOI: 10.1021/je301020n.

  • [35] Li S Lu X Xue Y Lei J Zheng T Wang C. Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. PLoS ONE. 2012;7(8). DOI: 10.1371/journal.pone.0043328.

  • [36] Ma Z Liu D Zhu Y Li Z Li Z Tian H et al. Graphene oxide/chitin nanofibril composite foams as column adsorbents for aqueous pollutants. Carbohyd Polym. 2016;144:230-237. DOI: 10.1016/j.carbpol.2016.02.057.

  • [37] Liu F Avanis Hashim N Liu Y Moghareh Abed MR Li K. Progress in the production and modification of PVDF membranes. J Membrane Sci. 2011;375:1-27. DOI: 10.1016/j.memsci.2011.03.014.

  • [38] Nohmi T Yamada T. Polyvinylidene fluoride type resin hollow filament microfilter and process for producing the same. U.S. Pat. 1983;4399035.

  • [39] Xia S Ni M. Preparation of poly(vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal. J Membrane Sci. 2015;473:54-62. DOI: 10.1016/j.memsci.2014.09.018.

  • [40] Meng N Priestley RCE Zhang Y Wang H. The effect of reduction degree of GO nanosheets on microstructure and performance of PVDF/GO hybrid membranes. J Membrane Sci. 2016;501:169-178. DOI: 10.1016/j.memsci.2015.12.004.

  • [41] Ganesh BM Isloor MA Ismail AF. Enhanced hydrophilicity and salt rejection study of graphene oxide-polysulfone mixed matrix membrane. Desalination. 2013;313:199-207. DOI: 10.1016/j.desal.2012.11.037.

  • [42] Wang Z Yu H Xia J Zhang F Li F Xia Y et al. Novel GO-blended PVDF ultrafiltration membranes. Desalination. 2012;299:50-54. DOI: 10.1016/j.desal.2012.05.015.

  • [43] Zhang J Xu Z Shan M Zhou B Li Y Li B et al. Synergetic effects of oxidized carbon nanotubes and grapheme oxide on fouling control and anti-fouling mechanism of polyvinylidene fluoride ultrafiltration membranes J Membrane Sci. 2013;448:81-92. DOI: 10.1002/9781118751015.ch10.

  • [44] Xu Z Zhang J Shan M Li Y Li B Niu J et al. Organosilane-functionalized graphene oxide for enhanced antifouling and mechanical properties of polyvinylidene fluoride ultrafiltration membranes. J Membrane Sci. 2014;458:1-13. DOI: 10.1002/9781119951438.eibc2212.

  • [45] Yu L Zhang Y Zhang B Liu J Zhang H Song C. Preparation and characterization of HPEI-GO/PES ultrafiltration membrane with antifouling and antibacterial properties. J Membrane Sci. 2013;447:452-462. DOI: 10.1016/j.memsci.2013.07.042.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 230 169 0
PDF Downloads 176 131 3