Importance of Endophytic Strains Pantoea agglomerans in the Biological Control of Rhizoctonia solani

Open access

Abstract

Antagonistic activity of microorganisms against phytopathogens is mainly the results of plants’ health improvement due to the inhibition of pathogens growth and the induction of plants resistance against diseases. The aim of the research was to determine antagonistic properties of Pantoea agglomerans against Rhizoctonia solani. The properties of two strains P. agglomerans BC17 and BC45 were assessed according to the following criteria: mycelial growth of R. solani in the presence of bacterial metabolites, an impact of P. agglomerans on the growth of sugar beet in the pots containing soil with and addition of R. solani and without it, the ability to produce indole-3-acetic acid (IAA). It has been recorded that antagonistic properties of tested strains are different. In the presence of metabolites of BC17 strains, the mycelial growth of R. solani was inhibited by 78 % and for the strain BC45 the value amounted 46 %. In the pot bioassay the number of infested plants growing in the soil inoculated with P. agglomerans and the pathogen was lower when compared with the pots containing R solani. A higher reduction of infested plants, amounting 23 %, was obtained for the strain BC17. Both strains had the ability to produce IAA - a plant hormone of the auxin class, in the presence of tryptophan and its absence in the medium. The highest concentration of IAA was recorded after 7 days of culturing in the supernatant obtained from the media containing 2000 μg/cm3 of tryptophan. For the strain BC17 the concentration of IAA marked in the post - culturing liquid amounted 71.57 μg/cm3, and for the BC45 strain it amounted over 80 μg/cm3. Obtained results prove that P. agglomerans may be used in the biological protection against phytopatogenic strains of R. solani.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Gomez TH Meisch RA. Pharmacol Biochem Behavior. 2004;79:261-267. DOI: 10.1016/j.pbb.2004.07.005.

  • [2] Wightwick A Walters R Allinson G Reichman S Menzies N. Environmental Risks of Fungicides Used in Horticultural Production Systems. In: Carisse O editor. Fungicides. Rijeka: InTech; 2010. DOI: 10.5772/13032.

  • [3] Broniarek-Niemiec A. Prog Plant Prot. 2016;56(1):52-61. DOI: 10.14199/ppp-2016-009.

  • [4] Egüen B. Melgarejo P De Cal A. Eur J Plant Pathol. 2016;145:815-827. DOI:10.1007/s10658-016-0871-4.

  • [5] Brent KJ Hollomon DW. Fungicide Resistance in Crop Pathogens: How Can It Be Managed? FRAC Monograph 1 (2nd ed.). Brussels: Fungicide Resistance Action Committee; 2007. http://www.frac.info/docs/default-source/publications/monographs/monograph-1.pdf

  • [6] Sakalauskas S Kačergius A Janušauskaitė D Čitavičius D. Žemdirbystė - Agriculture. 2014;101(2):185-192. DOI: 10.13080/z-a.2014.101.024.

  • [7] Deveau A Gross H Palin B Mehnaz S Schnepf M Leblond P et al. FEMS Microbiol Ecol. 2016;92(8):1-11. DOI: 10.1093/femsec/fiw107.

  • [8] Choudhary DK Prakash A Johri BN. Indian J Microbiol. 2007;47(4):289-297. DOI: 10.1007/s12088-007-0054-2.

  • [9] Nabrdalik M Grata K. Proc ECOpole. 2014;8(1):65-69. DOI: 10.2429/proc.2014.8(1)008.

  • [10] Nagrodzka K Moliszewska E Grata K Nabrdalik M. Proc ECOpole. 2016;10(2):741-748. DOI: 10.2429/proc.2016.10(1)081.

  • [11] Santoyo G Moreno-Hagelsieb G Orozco-Mosqueda MDC Glick BR. Microbiol Res. 2016;183:92-99. DOI: 10.1016/j.micres.2015.11.008.

  • [12] Brader G Compant S Mitter B Trognitz F Sessitsch A. Curr Opin Biotech. 2014;27:30-37. DOI: 10.1016/j.copbio.2013.09.012.

  • [13] Mishra A Chauhan PS Chaudhry V Tripathi M Nautiyal CS. Antonie Van Leeuwenhoek. 2011;100(3):405-413. DOI: 10.1007/s10482-011-9596-8.

  • [14] Dastager SG Deepa CK Puneet SC Nautiyal CS Pandey A. Lett Appl Microbiol. 2009;49(1):20-5. DOI: 10.1111/j.1472-765X.2009.02616.x.

  • [15] Saraf M Pandya U Thakkar A. Microbiol Res. 2014;169:18-29. DOI: 10.1016/j.micres.2013.08.009.

  • [16] Ma Y Oliveira RS Freitas H Zhang C. Front Plant Sci. 2016;7:1-19. DOI: 10.3389/fpls.2016.00918.

  • [17] Karimi AM Soroor S Farhad S. Ecol Chem Eng S. 2017;24(3):371-379. DOI:10.1515/eces-2017-0024.

  • [18] Moliszewska EB. Etiologia wybranych chorób korzeni buraka cukrowego. (The etiology of selected diseases of sugar beet roots). Studies and Monographs 412. Opole: University of Opole; 2009. ISBN: 9788373953291.

  • [19] Konno M Iwamoto S Seiwa K. J Ecol. 2011;99: 1394-1401. DOI: 10.1111/j.1365-2745.2011.01869.x

  • [20] Szkop M Sikora P Orzechowski S. Folia Microbiol (Praha). 2012;57(1):1-4. DOI: 10.1007/s12223-011-0089-y

  • [21] Ghai S Sood SS Jain RK. Indian J Microbiol. 2007;47:77-80. DOI: 10.1007/s12088-007-0014-x.

  • [22] Kai M Effmert U Berg G Piechulla B. Arch Microbiol. 2007;187(5):351-360. DOI: 10.1007/s00203-006-0199-0.

  • [23] Imran H Darine TH Mohamed ELG. Afr J Biotechnol. 2012;11(81):14660-14670. DOI: 10.5897/AJB10.2508.

  • [24] Lahlali R Bajii M Jijakli MH. Commun Agric Appl Biol Sci. 2007;72(4):973-982. http://hdl.handle.net/2268/36847.

  • [25] Yin C Hulbert SH Schroeder KL Mavrodi O Mavrodi D Dhingra A et al. Appl Environ Microbiol. 2013;79(23):7428-7438. DOI: 10.1128/AEM.01610-13.

  • [26] Barnett SJ Roget DK Ryder MH. Aust J Soil Res. 2006;44:331-342. DOI: 10.1071/SR05113.

  • [27] Harveson RM. Identifying and distinguishing seedling and root rot diseases of sugar beets. Plant Health Progress. 2006. DOI: 10.1094/PHP-2006-0915-01-DG.

  • [28] Nunes C Teixido N Usall J Vinas I. Acta Hort. 2001;553(2):403-404. DOI: 10.17660/ActaHortic.2001.553.92.

  • [29] Nunes C Usall J Teixidó N Fons E Vinas I. J Appl Microbiol. 2002;92(2):247-55. DOI: 10.1046/j.1365-2672.2002.01524.x.

  • [30] Morales H Sanchis V Usall J Ramos AJ Marín S. Int J Food Microbiol. 2008;122(1-2):61-67. DOI: 10.1016/j.ijfoodmicro.2007.11.056.

  • [31] Teixidó N Usall J Palou L Asensio A Nunes C Vinas I. Eur J Plant Pathol. 2001;107:685-694. DOI:10.1023/A:1011962121067.

  • [32] Zamani M Sharifi Tehrani A Ahmadzadeh M Hosseininaveh V Mostofy Y. J Plant Pathol. 2009;91(2):437-442. DOI: 10.4454/jpp.v91i2.975.

  • [33] Plaza P Usall J Smilanick JL Lamarca N Vinas I. J Food Prot. 2004;67(4):781-786. DOI: 10.4315/0362-028X-67.4.781.

  • [34] Bonaterra A Mari M Casalini L Montesinos E. Int J Food Microbiol. 2003;84(1):93-104. DOI: 10.1016/S0168-1605(02)00403-8.

  • [35] Vasebi Y Alizadeh A Safaie N. J Crop Prot. 2015;4(1):43-57. http://jcp.modares.ac.ir/article_11365_b8e009695849033e6cbf57a5470e8a5f.pdf.

  • [36] Petatán-Sagahón I Anducho-Reyes MA Silva-Rojas HV Arana-Cuenca A Tellez-Jurado A Cárdenas-Álvarez IO et al. Int J Mol Sci. 2011;12(9):5522-5537. DOI: 10.3390/ijms12095522.

  • [37] Lee KJ Kamala-Kannan S Sub HS Seong CK Lee GW. World J Microbiol Biotechnol. 2008;24:1139-1145. DOI:10.1007/s11274-007-9585-2.

  • [38] Walpola BH Yoon MH. Afr J Microbiol Res.2013;7(3):266-275. DOI: 10.5897/AJMR12.2282.

  • [39] Apine OA Jadhav JP. J Appl Microbiol. 2011;110(5):1235-1244. DOI:10.1111/j.1365-2672.2011.04976.x.

  • [40] Cimmino A Andolfi A Marchi G Surico G Evidente A. Phytopathol Mediterr. 2006;45:247-252. DOI: 10.14601/Phytopathol_Mediterr-1831.

  • [41] Sergeeva E Hirkala DLM Nelson LM. Plant Soil. 2007;297(1):1-13. DOI: 10.1007/s11104-007-9314-5.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 348 125 13
PDF Downloads 229 66 9