Effect of pH on the Production of Volatile Fatty Acids in Dark Fermentation Process of Organic Waste

Open access

Abstract

The aim of this study was to investigate the effect of pH on the dark fermentation process of kitchen waste by specifying the composition of the volatile fatty acids (VFA), H2 and by drawing the carbon balance. Studies were carried out in 8 dm3 batch bioreactor in mesophilic conditions. The kitchen waste from the city of Lodz were used as a substrate. Based on the study, it was observed that most of the VFA was produced during the first two days of the process, while in the following days the production was diminished. The highest production of VFA (19.5 g/dm3) was obtained in the bioreactor, where the pH was 7 and 8. Analyzing the produced VFA it was observed that mostly the acetic and butyric acid had been produced. Most of acetic acid (over 70 %) was obtained in fermenter with pH 7 and 8. In contrast, most of the butyric acid (over 40 %) was in the bioreactor with a pH of 6. Production of H2 was in the range from 4.29 to 26.5 dm3, wherein the largest amount of H2 was created in the bioreactor with a pH of 6.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Nguyen DD Chang SW Cha JH Jeong SY Yoon YS Lee SJ et al. Energy Conver Manage. 2017;135. DOI: 10.1016/j.enconman.2016.09.066.

  • [2] Lee WS Chua ASM Yeoh HK Ngoh GC Chem Eng J. 2014;235:83-99. DOI: 10.1016/j.cej.2013.09.002.

  • [3] Li Y Jin Y Li J. Energy. 2016;98:155-167. DOI: 10.1016/j.energy.2016.01.013.

  • [4] Tsai WT Lin CC Yeh CW. Renew Sust Energy Rev. 2007;11:838-57. DOI: 10.1016/j.rser.2005.05.005.

  • [5] Lee M Hidaka T Hagiwara W Tsuno H. Bioresour Technol. 2009;100:578-585. DOI: 10.1016/j.biortech.2008.06.063.

  • [6] Charles W Walker L Cord-Ruwisch R. Bioresour Technol. 2009;100:2329-2335. DOI: 10.1016/j.biortech.2008.11.051.

  • [7] Kim S Choi K Kim JO Chung J. Biodegradation. 2013;24(6):753-764. DOI: 10.1007/s10532-013-9623-8.

  • [8] Singhania RR Patel AK Christophe G Fontanille P Larroche C. Bioresour Technol. 2013;145:166-174. DOI: 10.1016/j.biortech.2012.12.137.

  • [9] Lee Z Li S Lin J Wang Y Kuo P Cheng S. Int J Hydrogen Energy. 2008;33:5234-5241. DOI: 10.1016/j.ijhydene.2008.05.006.

  • [10] Lay JJ Fan KS Ku CH. Int J Hydrogen Energy. 2003;28(12):1361-1367. DOI: 10.1016/S0360-3199(03)00027-2.

  • [11] Wong Y Wu T Juan J. Renew Sust Energ Rev. 2014;34:471-482. DOI: 10.1016/j.rser.2014.03.008.

  • [12] Cappai G De Gioannis G Friargiu M Massi E Muntoni A Polettini A et al. Waste Manage. 2014;34(8):1510-1519. DOI: 10.1016/j.wasman.2014.04.014.

  • [13] Feng L Chen Y Zheng X. Environ Sci Technol. 2009;43:4373-4380. DOI: 10.1021/es8037142.

  • [14] Infantes D Del Campo AG Villaseñor J Fernández FJ. Int J Hydrogen Energy. 2011;36(24):15595-15601. DOI: 10.1016/j.ijhydene.2011.09.061.

  • [15] Jankowska E Chwiałkowska J Stodolny M Oleskowicz-Popiel P. Bioresour Technol. 2015;190:274-280. DOI: 10.1016/j.biortech.2015.04.096.

  • [16] Temudo MF Kleerebezem R van Loosdrecht M. Biotechnol Bioeng. 2007;98(1):69-79. DOI: 10.1002/bit.21412.

  • [17] Yuan H Chen Y Zhang H Jiang S Zhou Q Gu G. Environ Sci Technol. 2006;40(6):2025-2029. DOI: 10.1021/es052252b.

  • [18] Rodríguez J Kleerebezem R Lema JM van Loosdrecht M. Biotechnol Bioeng. 2006;93(3):592-606. DOI: 10.1002/bit.20765.

  • [19] Temudo MF Muyzer G Kleerebezem R van Loosdrecht MC. Appl Microbiol Biotechnol. 2008;80(6):1121-1130. DOI: 10.1007/s00253-008-1669-x.

  • [20] Eaton AD Clesceri LS Rice EW Greenberg AE Franson MAH. Standard Methods for the Examination of Water and Wastewater: Centennial Edition. 21st ed. Washington: American Public Health Association; 2005. ISBN: 0875530478.

  • [21] Liu X Hu X Wang J Song Y Wang M Liu R et al. Environ Earth Sci. 2015;73:5047-5056. DOI: 10.1007/s12665-015-4194-0.

  • [22] He MN Sun YB Zou DX Yuan HR Zhu BN Li XJ et al. Procedia Environ Sci. 2012;16:85-94. DOI: 10.1016/j.proenv.2012.10.012.

  • [23] Zhang B Zhang LL Zhang SC Shi HZ Cai WM. Environ Technol. 2005;26(3):329-339. DOI: 10.1080/09593332608618563.

  • [24] Hong C Haiyun W. Bioresour Technol. 2010;101:5487-5493. DOI: 10.1016/j.biortech.2010.02.013.

  • [25] Feng L Yan Y Chen Y. J Environ Sci. 2009;21(5):589-594. DOI:10.1016/S1001-0742(08)62312-8.

  • [26] Chen H Meng H Nie Z Zhang M. Bioresour Technol. 2013;128:533-538. DOI: 10.1016/j.biortech.2012.10.121.

  • [27] Wang K Yin J Shen D Li N. Bioresour Technol. 2014;161:395-401. DOI: 10.1016/j.biortech.2014.03.088.

  • [28] Pilarska AA Pilarski K Witaszek K Waliszewska H Zborowska M Waliszewska B et al. Ecol Chem Eng S. 2016;23(1):99-115. DOI: 10.1515/eces-2016-0007.

  • [29] Lengeler JW Drews G Schlegel HG. Biology of Prokaryotes. Oxford: Blackwell Science; 1998. ISBN: 0632053577.

  • [30] Parkin GF Owen WF. Fundamental of anaerobic digestion of wastewater sludge. J Environ Eng. 1986;112:867-920. DOI: 10.1061/(ASCE)0733-9372.

  • [31] Chen YG Luo JY Yan YY Feng LY. Appl Energy. 2013;102:1197-1204. DOI: 10.1016/j.apenergy.2012.06.056.

  • [32] Slezak R Grzelak J Krzystek L Ledakowicz S. Waste Manage. 2017;68:610-617. DOI: 10.1016/j.wasman.2017.06.024.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 666 298 13
PDF Downloads 397 211 15