Reservoir’s Impact on the Water Chemistry of the Teesta River Mountain Course (Darjeeling Himalaya)

Open access

Abstract

The article presents the role of the newly built reservoir in the formation of the hydrochemistry of water of the Teesta River (a tributary of the Brahmaputra) in its Himalayan course. Field research were performed in the post-monsoon season of the period 2013-2015. Sampling and measuring points were located in five points over 43 km of the Teesta River in the Darjeeling Himalaya. Analysis of water along of river longitudinal profile above and below the reservoir suggest that the reservoir caused decrease most of the basic ions concentrations (Cl, K+, Na+, Mg2+, NO3 and PO43−). An inverse trend was observed only with respect to Ca2+, SO42− and NH4+. The dam does not influent on the F concentration. The reservoir causes minor enrichment most of the heavy metals such Cu, Ni, Zn, Cr, Cd and Sr. The lower enrichment of Teesta water below the dam indicates the water self-purification processes for metals by the Teesta Reservoir. The changes of physicochemical properties and concentrations of ions caused by the reservoir are usually normalised by environmental factors before the Teesta River outlet from the Himalayas (within 15 km of the river).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Chapman DV editor. Water Quality Assessments: A Guide to the Use of Biota Sediments and Water in Environmental Monitoring. London: E & FN Spon; 1996. https://www.researchgate.net/publication/237320993_Water_Quality_Assessments_-_A_Guide_to_Use_of_Biota_Sediments_and_Water_in_Environmental_Monitoring_-_Second_Edition.

  • [2] Nikanorov AM Brazhnikova LV. Water chemical composition of rivers lakes and wetlands. In: Khublaryan MG editor. Types and Properties of Water. 2009;2:42-80. http://www.eolss.net/Sample-Chapters/C07/E2-03.pdf

  • [3] Ji ZG. Hydrodynamics and Water Quality: Modeling Rivers Lakes and Estuaries. 2nd edition. New Jersey: John Wiley Sons; 2017. ISBN: 978-1-118-87715-9

  • [4] Allan JD Castillo MM. Stream Ecology: Structure and Function of Running Waters. New York: Springer Sci Business Media; 2007. ISBN 978-1-4020-5583-6.

  • [5] Hem JD. Study and Interpretation of the Chemical Characteristics of Natural Water. 2254. Department of the Interior US Geological Survey. 1985. https://pubs.usgs.gov/wsp/wsp2254/pdf/wsp2254a.pdf.

  • [6] Gao Y Wang B Liu X Wang Y Zhang J Jiang Y et al. Impacts of river impoundment on the riverine water chemistry composition and their response to chemical weathering rate. Frontiers Earth Sci. 2013;7:351-360. DOI: 10.1007/s11707-013-0366-y.

  • [7] Soja R Wiejaczka Ł. The impact of a reservoir on the physicochemical properties of water in a mountain river. Water Environ J. 2014;28:473-482. DOI: 10.1111/wej.12059.

  • [8] Wiejaczka Ł. Reservoir triggered distortion in the relation between water conductivity and river temperature. Water Resour. 2015;42:362-370. DOI: 10.1134/S0097807815030070.

  • [9] Kijowska-Strugała M Wiejaczka Ł Kozłowski R. Influence of reservoirs on the concentration of nutrients in the water of mountain rivers. Ecol Chem Eng S. 2016;23(3):413-424. DOI: 10.1515/eces-2016-0029.

  • [10] Ling TY Gerunsin N Soo CL Nyanti L Sim SF Grinang J. Seasonal changes and spatial variation in water quality of a large young tropical reservoir and its downstream river. J Chem. 2017. DOI: 10.1155/2017/8153246.

  • [11] Hannan HH. Chemical modifications in reservoir-regulated streams. In: The Ecology of Regulated Streams. Boston: Springer US; 1979:75-94. DOI: 10.1007/978-1-4684-8613-1_6.

  • [12] Palmer RW O’Keeffe JH. Downstream effects of impoundments on the water chemistry of the Buffalo River (Eastern Cape) South Africa. Hydrobiologia. 1990;202:71-83. DOI: 10.1007/BF00027093.

  • [13] Harrison JA Maranger RJ Alexander RB Giblin AE Jacinthe PA Mayorga E et al. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry. 2009;93:143-157. DOI: 10.1007/s10533-008-9272-x.

  • [14] Rigacci LN Giorgi AD Vilches CS Ossana NA Salibián A. Effect of a reservoir in the water quality of the Reconquista River Buenos Aires Argentina. Environ Monitoring Assess. 2013;185:9161-9168. DOI: 10.1007/s10661-013-3243-y.

  • [15] Grumbine RE Pandit MK. Threats from India’s Himalaya dams. Science. 2013;339:36-37. DOI: 10.1126/science.1227211.

  • [16] CISMHE (Centre for Inter Disciplinary Studies of Mountain and Hill Development) Carrying Capacity Study of Teesta Basin in Sikkim. Volume IV: Water Environment. New Delhi: CISMHE; 2006. http://www.actsikkim.com/docs/CCS_IV_Water_Environment.pdf.

  • [17] Starkel L Basu S editors. Rains Landslides and Floods in the Darjeeling Himalaya. New Delhi: Indian National Science Academy; 2000.

  • [18] Bookhagen B Burbank DW. Towards a complete Himalayan hydrological budget: The spatiotemporal distribution of snow melt and rainfall and their impact on river discharge. J Geophys Res-Earth Surf. 2010;115 (F3). DOI: 10.1029/2009jf001426.

  • [19] Prokop P Walanus A. Impact of the Darjeeling-Bhutan Himalayan front on rainfall hazard pattern. Natural Hazards. 2017;89:387-404. DOI: 10.1007/s11069-017-2970-8.

  • [20] Vörösmarty CJ Fekete BM Tucker BA. Monthly mean river discharge at gauging station Anderson Bridge. PANGAEA; 2004. DOI: 10.1594/PANGAEA.218327.

  • [21] Murray JA Bochin NA. Instructions for compilation of the chapter on catastrophic floods for the UNESCO publication “Annual summary of information on natural disasters”. Forms with explanatory notes. Paris: UNESCO; 1973. http://unesdoc.unesco.org/images/0000/000031/003131EB.pdf.

  • [22] Acharyya SK. Structural framework and tectonic evolution of the Eastern Himalaya. Himalayan Geol. 1980;10:412-439. https://www.researchgate.net/profile/Subhrangsu_Acharyya/publication/257919243_Structural_framework_and_tectonic_evolution_of_the_Eastern_Himalaya/links/5782271f08ae69ab88285a34.pdf.

  • [23] Bhattacharyya K Mitra G. Geometry and Kinematics of the Darjeeling-Sikkim Himalaya India: Implications for the Evolution of the Himalayan Fold-Thrust Belt. In: EGU General Assembly Conference Abstracts. 2012;14:4226. DOI: 10.1016/j.jseaes.2015.09.008.

  • [24] Champion HG Seth SK. A Revised Survey of Forest Types of India. New Delhi: Manager Publications; 1968. ISBN: 978-8181580610.

  • [25] Prokop P Płoskonka D. Natural and human impact on the land use and soil properties of the Sikkim Himalayas piedmont in India. J Environ Manage. 2014;138:15-23. DOI: 10.1016/j.jenvman.2014.01.034.

  • [26] Wiejaczka Ł Bucała A Sarkar S. Human role in shaping the hydromorphology of Himalayan rivers: study of the Tista River in Darjeeling Himalaya. Current Sci. 2014;106:717-724. https://www.researchgate.net/publication/263620718_Human_role_in_shaping_the_hydromorphology_of_Himalayan_rivers_Study_of_the_Tista_River_in_Darjeeling_Himalaya.

  • [27] Reuss JO Johnson DW. Acid deposition and the acidification of soils and water. Ecol Stud. 1986;59:1-120.

  • [28] Bi SP An SQ Liu F. A practical application of Driscoll’s equation for predicting the acid-neutralizing capacity in acidic natural waters equilibria with the mineral phase gibbsite. Environ Int. 2001;26:327-333. DOI: 10.1016/S0160-4120(01)00008-3.

  • [29] Hemond HF. Acid neutralizing capacity alkalinity and acid-base status of natural waters containing organic acids. Environ Sci Technol. 1990;24:1486-1489. https://stuff.mit.edu/afs/athena/course/1/1.75/www/Lecture8AlkalinityPaper.pdf.

  • [30] Eshleman KN Davies TD Tranter M Wigington PJ. A two-component mixing model for predicting regional episodic acidification of surface waters during spring snowmelt periods. Water Resource Res. 1995;31:1011-1021. DOI: 10.1029/94WR03289.

  • [31] Driscoll CT Lawrence GB Bulger AJ Butler TJ Cronan CS Eagar C et al. Acidic deposition in the northeastern United States: Sources and inputs ecosystem effects and management strategies. Bioscience. 2001;51:180-198. DOI: 10.1641/0006-3568(2001)051 [0180:ADITNU]2.0.CO;2.

  • [32] Kernan MR Helliwell RC. Partitioning the variation within the acid neutralizing capacity of surface waters in Scotland in relation to land cover soil and atmospheric depositional factors. Sci Total Environ. 2001;265:39-49. DOI: 10.1016/S0048-9697(00)00648-3.

  • [33] Sullivan TJ Cosby BJ Webb JR Dennis RL Bulger AJ Deviney Jr FA. Streamwater acid-base chemistry and critical loads of atmospheric sulfur deposition in Shenandoah National Park Virginia. Environ Monit Assess. 2008;137:85-99. DOI: 10.1007/s10661-007-9731-1.

  • [34] Kozłowski R Jóźwiak M. Chemical denudation in a geoecosystem in acid immision conditions. Ecol Chem Eng S. 2013;20(1):41-54. DOI: 10.2478/eces-2013-0003.

  • [35] Abrahim GMS Parker RJ. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary Auckland New Zealand. Environ Monit Assess. 2008;136:227-238. DOI: 10.1007/s10661-007-9678-2.

  • [36] Zhao Q Liu S Deng L Yang Z Dong S Wang C et al. Spatio-temporal variation of heavy metals in fresh water after dam construction: a case study of the Manwan Reservoir Lancang River. Environ Monit Assess. 2012;184:4253-426. DOI: 10.1007/s10661-011-2260-y.

  • [37] Birch GF Olmos MA. Sediment-bound heavy metals as indicators of human influence and biological risk in coastal water bodies. ICES. J Marine Sci. 2008;65:1407-1413. DOI: 10.1093/icesjms/fsn139.

  • [38] Mahanta C Subramanian V. Water quality mineral transport and sediment biogeochemistry. In: Singh V Sharma N Ojha CSP editors. The Brahmaputra Basin Water Resources. Vol. 47. Springer Science Business Media. 376-400. 2004. https://link.springer.com/chapter/10.1007/978-94-017-0540-0_21.

  • [39] Subramanian V. Water quality in south Asia. Asian J Water Environ Pollut. 2004;1:41-54. https://content.iospress.com/articles/asian-journal-of-water-environment-and-pollution/ajw1-1-2-07.

  • [40] Singh AK Mondal GC Sing PK Singh S Singh TB Tewary BK. Hydrochemistry of reservoirs of Damodar River basin India: weathering processes and water quality assessment. Environ Geol. 2005;48:1014-1028. DOI: 10.1007/s00254-005-1302-6.

  • [41] Singh SK Sarin MM France-Lanord C. Chemical erosion in the eastern Himalaya: Major ion composition of the Brahmaputra and δ13C of dissolved inorganic carbon. Geochim Cosmochim Acta. 2005;69:3573-3588. DOI: 10.1016/j.gca.2005.02.033.

  • [42] Piper AM. A graphic procedure in the geochemical interpretation of water analyses. Eos. Transact Amer Geophys Union. 1944;25:914-928. DOI: 10.1029/TR025i006p00914.

  • [43] Handique S Sharma P Baruah KK Tripathi JK. Spatial and temporal variations in the geochemistry of the Brahmaputra River water. Int J Geosci. 2017;8:756-765. DOI: 10.4236/ijg.2017.85042.

  • [44] Gibbs RJ. Mechanisms controlling world water chemistry. Science. 1970;170:1088-1090. DOI: 10.1126/science.170.3962.1088.

  • [45] Galy A France-Lanord C Derry LA. The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh. Geochim Cosmochim Acta. 1999;63:1905-1925. DOI: 10.1016/S0016-7037(99)00081-2.

  • [46] World Health Organization. Guidelines for Drinking-water Quality. Fourth edition. Geneva:2011. ISBN 9789241548151. http://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 555 294 12
PDF Downloads 268 166 15