New Methods of Natural Gas Adjusting for Technological Purposes Based on Modern Filtration Materials

Open access

Abstract

Reservoir gas treatment technologies currently in use require significant investments in equipment and materials. Considering the foregoing, new technologies are sought for treatment and separation of components of extracted gas. They will guarantee compliance with gas quality requirements arising from applicable standards while at the same time lowering the costs of investment, service and environmental protection. Therefore, the purpose of this work was to develop an efficient mobile technology for natural gas treatment, on the basis of advanced filtering and coalescing materials and membranes, which eliminate the existing, economically non-viable processes and reduce the costs related to development of new reservoirs. The purpose of designed materials was removal of solid particles, water, higher hydrocarbons and nitrogen from natural gas. Presented integrated filtration and membrane system, characterized by a highly compact design enabling installation in container stations and transporting the system between specific points of production.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] BP Statistical Review of World Energy June 2017. www.bp.com/content/dam/bp/en/corporate/pdf/energy-economics/statistical-review-2017/bp-statistical-review-of-world-energy-2017-full-report.pdf.

  • [2] Faramawy S Zaki T Sakr AAE. Natural gas origin composition and processing: A review. J Nat Gas Sci Eng. 2016;34:34-54. DOI: 10.1016/j.jngse.2016.06.030.

  • [3] Polska Norma PN-C-04753: 2011. Gaz ziemny - Jakość gazu dostarczanego odbiorcom z sieci dystrybucyjnej (Polish Standard PN-C-04753: 2011: Natural gas - The quality of gas supplied to customers from the distribution network). http://sklep.pkn.pl/pn-c-04753-2011p.html.

  • [4] Alcheikhhamdon Y Hoorfar M. Natural gas quality enhancement: A review of the conventional treatment processes and the industrial challenges facing emerging technologies. J Nat Gas Sci Eng. 2016;34:689-701. DOI: 10.1016/j.jngse.2016.07.034.

  • [5] Rufford TE Smart S Watson GCY Graham BF Boxall J Diniz da Costa JC et al. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies J Petrol Sci Eng. 2012;94-95:123-154. DOI: 10.1016/j.petrol.2012.06.016.

  • [6] Bernardo P Drioli E Golemme G. Membrane gas separation: a review/state of the art. Ind Eng Chem Res. 2009;48(10):4638-4663. DOI: 10.1021/ie8019032.

  • [7] Szwast M. Membrany polimerowe do rozdzielania gazów (Polymeric membranes for gas separation). Przem Chem. 2012;91:1356-1361. www.sigma-not.pl/publikacja-69470-membrany-polimerowe-do-rozdzielaniagaz%C3%B3w-przemysl-chemiczny-2012-7.html.

  • [8] Bodzek M. Inorganic micropollutants removal by means of membrane processes. Ecol Chem Eng S. 2013;20(4):633-658. DOI: 10.2478/eces-2013-0044.

  • [9] Scholes CA Stevens GW Kentish SE. Membrane gas separation applications in natural gas processing. Fuel. 2012;96:15-28. DOI: 10.1016/j.fuel.2011.12.074.

  • [10] Baker RW Lokhandwala K. Natural gas processing with membranes: an overview. Industrial Eng Chem Res. 2008;47(7):2109-2121. DOI: 10.1021/ie071083w.

  • [11] Bernardo P Drioli E. Membrane gas separation progresses for process intensification strategy in the petrochemical industry. Petroleum Chem. 2010;50(4):271-282. DOI: 10.1134/S0965544110040043.

  • [12] Zhang CH Yang FL Wang WJ Chen B. Preparation and characterization of hydrophilic modification of polypropylene non-woven fabric by dip-coating PVA (polyvinyl alcohol). Separat Purif Technol. 2008;61(3):276-286. DOI: 10.1016/j.seppur.2007.10.019.

  • [13] Zhu J Fan Y Xu N. Modified dip-coating method for preparation of pinhole-free ceramic membranes. J Membrane Sci. 2011;367(1):14-20. DOI: 10.1016/j.memsci.2010.10.024.

  • [14] Szwast M. Nowe membrany do osuszania gazu ziemnego (New membranes for dehydration of natural gas). Przem Chem. 2015;94(12):2213-2217. DOI: 10.15199/62.2015.12.25.

  • [15] Snowdon LR. Natural gas composition in a geological environment and the implications for the processes of generation and preservation. Organic Geochem. 2001;32(7):913-931. DOI: 10.1016/S0146-6380(01)00051-1.

  • [16] Freeman C Moridis GJ Michael GE Blasingame TA. Measurement modeling and diagnostics of flowing gas composition changes in shale gas wells. In: SPE Latin America Caribbean Petroleum Eng Conf. Soc Petroleum Engineers. 2012. DOI: 10.2118/153391-MS.

  • [17] Koros WJ Walker DRB. Gas separation membrane material selection criteria: weakly and strongly interacting feed component situations. Polymer J. 1991;23(5):481-490. DOI: 10.1295/polymj.23.481.

  • [18] Sridhar S Smitha B Aminabhavi TM. Separation of carbon dioxide from natural gas mixtures through polymeric membranes - a review. Separation Purif Rev. 2007;36(2):113-174. DOI: 10.1080/15422110601165967.

  • [19] Metz SJ Van de Ven WJC Potreck J Mulder MHV Wessling M. Transport of water vapor and inert gas mixtures through highly selective and highly permeable polymer membranes. J Membrane Sci. 2005;251(1-2):29-41. DOI: 10.1016/j.memsci.2004.08.036.

  • [20] Baisong L Zhongli J Xue Y. Evaluation of gas-liquid separation performance of natural gas filters. Petrol Sci. 2009;6:438-444. DOI: 10.1007/s12182-009-0067-z.

  • [21] Zhen L Zhongli J Jinfeng Z Lanjie L. Influence of processing parameters on gas-liquid filtration performance of fibrous filter cartridge. Procedia Eng. 2015;102:911-920. DOI: 10.1016/j.proeng.2015.01.212.

  • [22] Thomas D Contal P Renaudin V Penicot P Leclerc D Vendel J. Modelling of pressure drop in HEPA filters during dynamic filtration. J Aerosol Sci. 1999;30:235-246. DOI: 10.1016/S0021-8502(98)00036-6.

  • [23] Frising T Thomas D Bemer D Contal P. Clogging of fibrous filters by liquid aerosol particles: experimental and phenomenological modeling study. Chem Eng Sci. 2005;60:2751-2762. DOI: 10.1016/j.ces.2004.12.026.

  • [24] Kasper G Schollmeier S Meyer J Hoferer J. The collection efficiency of a particle-loaded single fiber. J Aerosol Sci. 2009;40:993-1009. DOI: 10.1016/j.jaerosci.2009.09.005.

  • [25] Boskovic L Agranovski IE Braddock RD. Filtration of nanosized particles with different shape on oil coated fibres. J Aerosol Sci. 2007;38:1220-1229. DOI: 10.1016/j.jaerosci.2007.09.003.

  • [26] Müller TK Meyer J Thébault E Kasper G. Impact of an oil coating on particle deposition and dust holding capacity of fibrous filters. Powder Technol. 2014;253:247-255. DOI: 10.1016/j.powtec.2013.11.036.

  • [27] Kasper G Schollmeier S Mayer J. Structure and density of deposits formed on filter fibers by inertial particle deposition and bounce. J Aerosol Sci. 2010;41:1167-1182. DOI: 10.1016/j.jaerosci.2010.08.006.

  • [28] Kralchevsky PA Paunov VN Nagayama K. Lateral capillary interaction between particles protruding from a spherical liquid layer. J Fluid Mech. 1995;99:105-132. DOI: 10.1017/S0022112095003442.

  • [29] Lian G Thornton C Adams MJ. A theoretical study of the liquid bridge forces between two rigid spherical bodies. J Colloid Interface Sci. 1993;161:138-147. DOI: 10.1006/jcis.1993.1452.

  • [30] Gac JM Jackiewicz A Werner Ł Jakubiak S. Consecutive filtration of solid particles and droplets in fibrous filters. Sep Purif Technol. 2016;170:234-240. DOI: 10.1016/j.seppur.2016.06.057.

  • [31] Podgórski A Maisser A Szymanski WW Jackiewicz A Gradoń L. Penetration of monodisperse singly charged nanoparticles through polydisperse fibrous filters. Aerosol Sci Tech. 2011;45(2):196-214. DOI: 10.1080/02786826.2010.531300.

  • [32] Jackiewicz A Podgórski A Gradoń L Michalski J. Nanostructured media to improve the performance of fibrous filters. KONA Powder Part J. 2013;30:244-255. DOI: 10.14356/kona.2013023.

  • [33] Jackiewicz A Bałazy A Podgórski A. Investigation of aerosol dispersion in fibrous filters. Pol J Chem Technol. 2008;10(1):66-72. DOI: 10.2478/v10026-008-0016-4.

  • [34] Bondar V Freeman BD Pinnau I Gas transport properties of poly(ether-b-amide) segmental block copolymers. J Polym Sci B. 2000;38:2051-2062. DOI: 10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO;2-D.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 174 3
PDF Downloads 205 122 3