The Role of Mineral Phases in the Biogas Production Technology

Milan Geršl 1 , Tjaša Kanduč 2 , Dalibor Matýsek 3 , Martin Šotnar 1 ,  and Jan Mareček 1
  • 1 Department of Agriculture, Food and Environmental Engineering, Faculty of Agronomy, Mendel University in Brno, 613 00, Brno
  • 2 Department of Environmental Sciences, Jožef Stefan Institute, , 1000, Ljubljana, Slovenia
  • 3 Institute of Clean Technologies for Extraction and Utilization of Energy Resources, Faculty of Mining and Geology, VŠB - Technical University of Ostrava, 708 33, Ostrava


In the field of electric power industry, renewable energy sources, fertilisers, reclamation, and waste management, biomass is widely studied and used. Minerals are present in every step of biogas transformation, but their forms, occurrence, and composition have not been studied yet. However, there is no comprehensive study research that would address the presence of mineral phases in the process of biogas production. This aim of the study is determination of the amount and composition of the mineral phases present in fermentation residues resulting from different production technologies. Digestate mineral composition was analysed using 46 samples from agricultural biogas plants and university testing biogas reactor. The majority of samples contained the amorphous phase. Minority phases consisted of quartz, albite, orthoclase, muscovite, and amphibole. Opal-CT was found in eleven samples (1.26 to 12.1% wt.). The elements present in gas-liquid fluids or in liquids, gases and aerosols within the biogas technology system may create mineral phases, namely the amorphous phase or the crystalline phase under certain conditions. Opal-CT may enter the fermenter as part of plant tissues referred to as phytoliths, or as an unwanted admixture of different origin. It may also originate from the present amorphous SiO2.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Holm-Nielsen JB, Al Seadi T, Oleskowicz-Popiel P. The future of anaerobic digestion and biogas utilization. Bioresource Technol. 2009;100:5478-5484. DOI: 10.1016/j.biortech.2008.12.046.

  • [2] Lantz M, Börjesson P. Greenhouse gas and energyassessment of the biogas from co-digestion injected into the natural gas grid: A Swedish case-study including effects on soil properties. Renew Energy. 2014;7:387-395. DOI: 10.1016/j.renene.2014.05.048.

  • [3] Mauky E, Fabian Jacobi H, Liebetrau J, Nelles M. Flexible biogas production for demand-driven energy supply-Feeding strategies and types of substrates. Bioresource Technol. 2014;178:262-269. DOI: 10.1016/j.biortech.2014.08.123

  • [4] Wu XF, Wu XD, Li JS, Xia XH, Mi T, Yang Q, et al. Ecological accounting for an integrated “pig-biogas-fish” system based on emergetic indicators. Ecol Indicators. 2014;47:189-197. DOI: 10.1016/j.ecolind.2014.04.033.

  • [5] Poeschl M, Ward S, Owende P. Environmental impacts of biogas deployment - Part II: life cycle assessment of multiple production and utilization pathways. J Cleaner Production. 2012;24,184-201. DOI: 10.1016/j.jclepro.2011.10.030.

  • [6] Persson M, Jönsson O, Wellinger A. Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy, Task 37; 2006.

  • [7] Ryckebosch E, Drouillon H, Vervaeren H. Techniques for transformation of biogas to biomethane. Biomass Bioenergy. 2011;35:1633-1645. DOI: 10.1016/j.biombioe.2011.02.033

  • [8] Marcato CE, Pinelli E, Pouech P, Winterton P, Guiresse M. Particle size and metal distribution in anaerobically digested pig slurry. Bioresource Technol. 2008;99(7):2340-2348. DOI: 10.1016/j.biortech.2007.05.013.

  • [9] Menardo S, Gioelli F, Balsari P. The methane yield of digestate: Effect of organic loading rate, hydraulic retention time and plant feeding. Bioresource Technol. 2011;102(3):2348-2351. DOI: 10.1016/j.biortech.2010.10.094.

  • [10] Govasmark E, Stäb J, Holen B, Hoornstra D, Nesbakk T, Salkinoja-Salonen M. Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Manage. 2011;31(12):2577-2583. DOI: 10.1016/j.wasman.2011.07.025.

  • [11] Rassi S, Läntelä J, Rintala J. Trace compounds affecting biogas energy utilisation - A review. Energy Convers Manage. 2011;52(12):3369-3375. DOI: 10.1016/j.enconman.2011.07.005.

  • [12] Plawsky JL, Wang G, William N. Kinetic model for the pyrolysis of polysiloxane polymers to ceramic composites. AIChE J. 2002;48(10):2315-2323. DOI: 10.1002/aic.690481021.

  • [13] Sevimoğlu O, Tansel B. Effect of persistent trace compounds in landfill gas on engine performance during energy recovery: a case study. Waste Manage. 2013;33(1):74-80. DOI: 10.1016/j.wasman.2012.08.016.

  • [14] Sevimoğlu O, Tansel B. Composition and source identification of deposits forming in landfill gas (LFG) engines and effect of activated carbon treatment on deposit composition. J Environ Manage. 2013;128:300-305. DOI: 10.1016/j.jenvman.2013.05.029.

  • [15] Huguen P, Le Saux G. Perspectives for a European standard on biomethane: a Biogasmax proposal. Biogasmax; 2010.

  • [16] Dewil R, Appels L, Baeyens J. Energy use of biogas hampered by the presence of siloxanes. Energy Convers Manage. 2005;47:1711-1722. DOI: 10.1016/j.enconman.2005.10.016.

  • [17] Rossol D, Schmelz KG. Siloxane im Faulgas. GWF, Wasser/Abwasser. 2005;146(1):55-61.

  • [18] Callander IJ, Barford JP. Recent advances in anaerobic digestion technology. Process Biochem. 1983;18:24-30.

  • [19] Stams AJM, Oude-Elferink SJWH, Westerman P. Metabolic interactions between methanogenic consortia and anaerobic respiring bacteria. In: Ahring BK, editor. Biomethanation I: Adv Biochem Eng/Biotechnol. 2003;81:31-56. DOI: 10.1007/3-540-45839-5_2.

  • [20] Tambone F, Genevini P, D’Imporzano G, Adani F. Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresource Technol. 2009;100(12):3140-3142. DOI: 10.1016/j.biortech.2009.02.012.

  • [21] Gómez X, Cuetos MJ, García AI, Morán A. An evaluation of stability by thermogravimetric analysis of digestate obtained from different biowastes. J Hazard Mater. 2007;49:(1)97-105. DOI: 10.1016/j.jhazmat.2007.03.049.

  • [22] Mandile AJ, Hutton AC. Quantitative X-ray diffraction analysis of mineral and organic phases in organic-rich rocks. Int J Coal Geol. 1995;28:51-69. DOI: 10.1016/0166-5162(95)00004-W.

  • [23] Bish DL, Post JE. Quantitative mineralogical analysis using the Rietveld full pattern fitting method. Amer Mineralogist. 1993;78:932-940.

  • [24] Bish DL, Post JE, Editors. Modern Powder Diffraction: Reviews in Mineralogy. Washington, D.C.: Mineralogical Society of America; 1989. ISBN-13: 978-0-939950-24-9.

  • [25] Bish DL, Chipera SJ. Problems and solutions in quantitative analysis of complex mixtures by X-ray powder diffraction. In: Barrett C, Charles S, editors. Advances in X-ray Analysis, 1988;31:295-308. Indiana, USA: Plenum Pub Co. ISBN-13: 978-0306422874.

  • [26] Bish DL, Howard SA. Quantitative phase analysis using the Rietveld method. J Appl Crystallog. 1988;21:86-91.

  • [27] Álvarez-Flórez J, Egusquiza E. Analysis of damage caused by siloxanes in stationary reciprocating internal combustion engines operating with landfill gas. Eng Failure Analysis. 2015;20:29-30. DOI: 10.1016/j.engfailanal.2015.01.010.


Journal + Issues