Effect of Nanoaquacitrates on Physiological Parameters of Fodder Galega Infected with Phytoplasma

Open access

Abstract

The laboratory experiments have been found that soaking seeds Galega orientalis L. (Fodder galega) in nanoaquacitrates solutions of Mn (10 and 20 mg/dm3), Mo (4 mg/dm3) and Mg (2 and 4 mg/dm3), has been lead to germination energy rise, while Mn (10 and 20 mg/dm3) and Mo (4 mg/dm3) concentrations has been influenced germinating ability. At the same time, the soaking seeds in solution of nanoaquacitrates Mn (20 mg/dm3) had the biggest stimulatory effect on the accumulation 7 daily sprouts mass (on 18%). It has been shown that soaking seeds in nanoparticles Mn and Mo solutions leads to the increase of catalase activities (especially under the influence of manganese) and peroxidase activities (under molybdenum influence). Applying the method of chlorophyll a fluorescence in the field and greenhouse experiments with Galega orientalis L. plants, artificial infected with phytoplasma Acholeplasma laidlawii var. granulum st. 118 the following changes in the photosynthetic apparatus has been indicated: reduction in the length of the light-antenna, blocking transport of electrons in plastoquinone pool PSII with reducing the pool of electron acceptors. It has also been indicated that photochemical activity resistance of the photosynthetic apparatus decreases while its stability increases, as result of described above effects the concentration of chlorophyll a and b in plants leaves decreases. The above-mentioned negative effects have been deactivated through foliar treatment of infected Galega orientalis L. plants with nanoaquacitrates solution Mo (4 mg/dm3) that allow increasing of photochemical resistance of photosynthetic apparatus as well as chlorophyll content in leaves. The foliar treatment with Mn (20 mg/dm3) solution of the infected plants, in compared with infected plants without treatment, resulted in more significant increase of Ki value (which correlate to the ribulose-1,5-bisphosphate carboxylase/oxygenase activity), which is explaining anti-mycoplasma effect of this solution.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Liu R Lal R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ. 2015;514:131-139. DOI: 10.1016/j.scitotenv.2015.01.104.

  • [2] Duhan JS Kumar R Kumar N Kaur P Nehra K Duhan S. Nanotechnology: The new perspective in precision agriculture. Biotechnol Rep (Amst). 2017;15:1-23. DOI: 10.1016/j.btre.2017.03.002.

  • [3] Taran NYu Gonchar OM Lopatko KG Batsmanova LM Patyka MV Volkogon MV. The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett. 2014;9(1):289. DOI: 10.1186/1556-276X-9-289.

  • [4] Mhamdi A Queval G Chaouch S Vanderauwera S Breusegem FV Noctor G. Catalase function in plants: a focus on Arabidopsis mutants as stress-mimic models. J Experiment Bot. 2010;61(15):4197-4220. DOI: 10.1093/jxb/erq282.

  • [5] Tanase C Popa V. Peroxidase superoxide-dismutase and catalase activity in corn plants developed under the influence of polyphenolic compounds and deuterium depleted water. A A I Cuza Univ Sect IIa Genet Mol Biol. 2014;15(1):7-12. http://www.gbm.bio.uaic.ro/index.php/gbm/article/view/1098.

  • [6] Bakalova S Nikolova A Nedeva D. Isoenzyme profiles of peroxidase catalase and superoxide dismutase as affected by dehydration stress and ABA during germination of wheat seeds. Bulg J Plant Physiol. 2004;30(1-2):64-77. https://journals4free.com/link.jsp?l=16815924.

  • [7] Choudhury S Panda P Sahoo L Panda SK. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8(4):e23681. DOI: 10.4161/psb.23681.

  • [8] Soto P Gaete H Hidalgo ME Assessment of catalase activity lipid peroxidation chlorophyll-a and growth rate in the freshwater green algae Pseudokirchneriella subcapitata exposed to copper and zinc. Lat Am J Aquat Res. 2011;39(2):280-285. DOI: 10.3856/vol39-issue2-fulltext-9.

  • [9] Azooz MM Abou-Elhamd MF Al-Fredan MA. Biphasic effect of copper on growth proline lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Aust J Crop Sci. 2012;6(4):688-694. https://www.researchgate.net/publication/231168321_Biphasic_effect_of_copper_on_growth_proline_lipid_peroxidation_and_antioxidant_enzyme_activities_of_wheat_Triticum_aestivum_cv_Hasaawi_at_early_growing_stage.

  • [10] Luhova L Lebeda A Hedererova Pec P. Activities of amino oxidase peroxidase and catalase in seedlings of Pisum sativum L. under different light conditions. Plant Soil Environ. 2003;49(4):151-157. http://www.agriculturejournals.cz/publicFiles/52843.pdf.

  • [11] Weisany W Sohrabi Y Heidari G Siosemardeh A Ghassemi-Golezani K. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics. 2012;5(2):60-67. http://www.pomics.com/sohrabi_5_2_2012_60_67.pdf.

  • [12] Stratu A Olteanu Z Peptanariu M Zamfirache MM The intensity of respiration and the activity of some oxide - reductases in seeds of pastinaca sativa l. treated with ultrasounds. An. ştiinţifice Univ “Al. I. Cuza” Iaşi Tomul LI s. II a. Biol Vegetală. 2005;51:65-68. http://www.bio.uaic.ro/publicatii/anale_vegetala/issue/2005/09-2005.pdf.

  • [13] Kyrylenko LV Patyka VP Fungoid diseases of galega orientalis. Agr Microbiol. 2016;24:52-58. http://www.sg-microb.ho.ua/arh/pdf24/SM24_08EN.pdf.

  • [14] Second International Phytoplasmologist Working Group Meeting Neustadt an der Weinstraße Germany. 2011;12(15):303. www.bulletinofinsectology.org/.../insectology64-Supplement-2011.pdf

  • [15] Gulyaeva AB Tokovenko IP Korobkova KS Patyka VP. Status and activity of the photosynthetic apparatus of wheat plants affected phytomycoplasmoses with phytohormones foliar treatment. J Sci World. 2015;10(26):52-56. http://scienceph.ru/d/413259/d/scienceandworldno10(26)octobervol.i_1.pdf.

  • [16] Henriques FS. Leaf chlorophyll fluorescence: background and fundamentals for plant biologists. Bot Rev. 2009;75:249-270. DOI: 10.10071/s12229-0099035y.

  • [17] Misra AN Misra M Singh R. Chlorophyll Fluorescence in Plant Biology. Biophysics. In: Misra AN editor. 2012;7:171-192. http://www.intechopen.com/books/biophysics/chlorophyll-fluorescence-in-plant-biology.

  • [18] Papageorgiou GC Govindjee G. Chlorophyll a Fluorescence: A Signature of Photosynthesis. In: Papageorgiou GC Govindjee G editors Netherlands: Springer. 2004. http://www.springer.com/gp/book/9781402032172#.

  • [19] Shavanova KE Marchenko OA Taran MV Starodub MF. Express estimation of resistant the horse chestnut to the influence cameraria ohridella desch. & dim. By using the method of the induction of chlorophyll fluorescence. Sci. Herald NULES. Ukr Ser: Biol Biotechnol Ecol. 2014;204:1-10. http://journals.nubip.edu.ua/index.php/Biologiya/article/view/4734.

  • [20] Stirbet A Govindjee G. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J Photoch Photobiol. B. 2011;104(1-2):236-257. DOI: 10.1016/j.jphotobiol.2010.12.010.

  • [21] Stirbet A Govindjee G. Chlorophyll a fluorescence induction: a personal perspective of the thermal phase the J-I-P rise. Photosynth Res. 2012;113:15-61. DOI: 10.1007/s11120-012-9754-5.

  • [22] Żurek G Rybka K Pogrzeba M Krzyżak J Prokopiuk K. Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLoS One. 2014;9(3):e91475. DOI: 10.1371/journal.pone.0091475.

  • [23] Adamovics A Dubrovskis V Plume I. Galega for fodder and biogas production. 13th Int Conf of Forage Conservation. Nitra Slovakia. 2008:170-171. https://www.cabdirect.org/cabdirect/abstract/20143176638.

  • [24] Peiretti PG Gai F. Chemical composition nutritive value fatty acid and amino acid contents of Galega officinalis L. during its growth stage and in regrowth. Anim Feed Sci Tech. 2006;130(3-4):257-267. DOI: 10.1016/j.anifeedsci.2006.01.007.

  • [25] Slepetys J. Influence of cutting and management regimes on Fodder galega for forage and seed production. Agro Research. 2010;8(Sp.Iss.III):711-720. http://agronomy.emu.ee/vol08Spec3/p08s325.pdf.

  • [26] Slepetys J Kadziuliene Z Sarunaite L Tilvikiene V Kryzeviciene A. Biomass potential of plants grown for bioenergy production. Proc Intern Sci Conf: Renewable Energy and Energy Efficiency Growing and Processing Technologies of Energy Crops. 2012;66-72. http://llufb.llu.lv/conference/Renewable_energy_energy_efficiency/Latvia_Univ_Agriculture_REEE_conference_2012.pdf

  • [27] Patyka V Buletsa N Pasichnyk L Zhitkevich N Kalinichenko A Gnatiuk T et al. Specifics of pesticides effects on the phytopathogenic bacteria. Ecol Chem Eng S 2016;23(2):311-331 DOI: 10.1515/eces-2016-0022

  • [28] Jeske M Pańka D Pala D Czart A. The effect of different organic fertilization on fungi colonizing plant roots and seeds of fodder galega (Galega orientalis Lam.). 11th Conf Europ Found for Plant Pathology. Kraków: Publ House Krakow Agricult Univ; 2014; 191. http://www.efpp.net/Documents/Krakow/Book%20of%20abstracts_11%20EFPP%20Conference_r.pdf.

  • [29] Cwalina-Ambroziak B Koc J. Fungi colonising the aboveground parts of fodder galega (Galega orientalis Lam.) cultivated in pure sowing and mixed with smooth brome-grass (Bromus inermis Leyss.). Acta Agrobot. 2012;58(1):125-133. DOI: 10.5586/aa.2005.018.

  • [30] Hisox JD Israelstam RJ. The method for the extraction of chlorofill from leaf tissue whithout maceration. Can J Bot. 1979;57(12):1332-1334. DOI: 10.1139/b79-163.

  • [31] Horton P Ruban A. Molecular design of the photosystem II light-harvesting antenna: Photosynthesis and photoprotection. J Exp Bot. 2004;56(411):1-9. DOI: 10.1093/jxb/eri023.

  • [32] Yamakawa H van Stokkum IHM Heber U Itoh S. Mechanisms of drought-induced dissipation of excitation energy in sun- and shade-adapted drought-tolerant mosses studied by fluorescence yield change and global and target analysis of fluorescence decay kinetics. Photosynth Res. 2017;135(1-3):285-298. DOI: 10.1007/s11120-017-0465-9.

  • [33] Ribeiro RV Santos MG Pimentel C Machado EC Oliveira RF. Can the critical temperature for photochemical damage in common bean plants be changed after a drought event? Bragantia Campinas. 2015;74(4):374-378. DOI: 10.1590/1678-4499.0141.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 420 193 8
PDF Downloads 163 108 3