Alleviation Effect of Selenium on Manganese Stress of Plants

Open access


Mn, as Fe, Zn, Cu and Ni is a heavy metal and also a necessary element all the living organisms. Excessive Mn nutrition causes a strong oxidative stress. The aim of the studies was to determination the effect of Se treatment (as sodium selenite Na2O4Se3) to alleviate the Mn stress of plants. Because of its sensitivity to oxidative stress induced by excessive concentrations of Mn a model plant was lettuce (Lactuca sativa L. ‘Sunny’). The studies were conducted in a controlled environment growth room in stable climate conditions: 16 h photoperiod; temperature light/dark 18.0 ±0.5°C/16.0 ±0.5°C; relative humidity 70-80%; quantum flux density 195-205 μmol m−2 s−1. Plants were grown hydroponically in nutrient solution characterized by excessive Mn content (19.2 mg dm−3) and different contents of Se (control; 0.77, 1.05, 1.33 mg dm−3). In all the combination were also tested different foliar sprays (distilled water and a 0.005% Se solution). Plants grown under conditions described above take up and transported Se from nutrient solutions into their leaves with a significant reduction of Mn concentration and changes in the plant nutrient status. With the increase in the concentrations of Se clearly narrowed quantitative relations in the leaves between this element and micro-metallic. Increasing Se levels in nutrient solution has a positive influence on the growth of plants, but Se foliar treatment generally decreases plant yield. The study shown that Se application may lead to alleviation of Mn stress of plants, with simultaneous reduce in Mn concentration in leaves - which may be of practical importance also in the cultivation of more economically important species.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Dietary references intakes for vitamin A vitamin K arsenic boron chromium copper iodine iron manganese molybdenum nickel silicon vanadium and zinc. Website (December 2017)

  • [2] Dobson AW Erikson KM Aschner M. Manganese neurotoxicity. Ann NY Acad Sci. 2004;1012:115-128.

  • [3] Socha AL Guerinot ML. Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Front Plant Sci. 2014;5:106. DOI: 10.3389/fpls.2014.00106.

  • [4] Ferreira Santos E Kondo Santini JM Pereira Paixão A Furlani Júnior E Lavres J Campos M et al. Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiol Biochem. 2017;113:6-19. DOI: 10.1016/j.plaphy.2017.01.022.

  • [5] Homoncik SC MacDonald AM Heal KV Dochartaigh BEO Ngwenya BT. Manganese concentrations in Scottish groundwater. Sci Total Environ. 2010;408(12):2467-2473. DOI: 10.1016/j.scitotenv.2010.02.017.

  • [6] Breś W Kleiber T Trelka T. Quality of water used for drip irrigation and fertigation of horticultural plants. Folia Hort. 2010;22(2):67-74.

  • [7] Kleiber T. Effect of manganese nutrition on content of nutrient and yield of lettuce (Lactuca sativa L.) in hydroponic. Ecol Chem Eng S. 2014;21(3):529-537. DOI: 10.2478/eces-2014-0039.

  • [8] Kleiber T. Changes of nutrient contents in tomato fruits under the influence of increasing intensity of manganese nutrition. Ecol Chem Eng S. 2014.;21(2):297-307. DOI: 10.2478/eces-2014-0023.

  • [9] Commission Regulation (EU) No 420/2011 of 29 April 2011 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs.

  • [10] Jolly YN Islam A Akbar S. Transfer of metals from soil to vegetables and possible health risk assessment. SpringerPlus. 2013;2(1):385. DOI: 10.1186/2193-1801-2-385.

  • [11] Zhou H Yang W-T Zhou X et al. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int J Environ Res Public Health. 2016;13(3):289. DOI: 10.3390/ijerph13030289.

  • [12] Thomsen HS Svendsen O Klastrup S. Increased manganese concentration in the liver after oral intake. Academic Radiol. 2004;111:38-44; DOI: 10.1016/S1076-6332(03)00571-3.

  • [13] Neal AP Guilarte TT. Mechanisms of heavy metal neurotoxicity: Lead and manganese. J Drug Metab Toxicol. 2012;S5 002:1-13. DOI: 10.4172/2157-7609.S5-00.

  • [14] O’Neal SL Zheng W. Manganese toxicity upon overexposure: A decade in review. Curr Environ Health Reports. 2015;2(3):315-328. DOI: 10.1007/s40572-015-0056-x.

  • [15] Liang Y Wanchun S Yong-Guan Zhu Christie P. Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut. 2007;1472:422-428. DOI: 10.1016/j.envpol.2006.06.008.

  • [16] Maksimović DJ Bogdanović J Maksimović V Nikolic M. Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. J Plant Nutr Soil Sci. 2007;170:739-744. DOI: 10.1002/jpln.200700101.

  • [17] Liu R Jia T Cui Y Lin H Li S. The protective effect of selenium on the chicken pancreas against cadmium toxicity via alleviating oxidative stress and autophagy. Biol Trace Elem Res. 2017;1-7. DOI: 10.1007/s12011-017-1186-9.

  • [18] Ikemoto T Kunito T Tanaka H Baba N Miyazaki N Tanabe S. Detoxification mechanism of heavy metals in marine mammals and seabirds: interaction of selenium with mercury silver copper zinc and cadmium in liver. Arch Environ Con Toxicol. 2004;47:402-413. DOI: 10.1007/s00244-004-3188-9.

  • [19] Soudani N Sefi M Ben Amara I Boudawara T Zeghal N. Protective effects of selenium (Se) on chromium (VI) induced nephrotoxicity in adult rats. Ecotox Environ Safe. 2010;73:671-678. DOI: 10.1016/j.ecoenv.2009.10.002.

  • [20] Fargašová A Pastierová J Svetková K. Effect of Se-metal pair combinations (Cd Zn Cu Pb) on photosynthetic pigments production and metal accumulation in Sinapis alba L. seedlings. Plant Soil Environ. 2006;52:8-15.

  • [21] Cartes P Jara AA Pinilla L Rosas A Mora ML. Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Annals Appl Biol. 2010:156(2):297-307. DOI: 10.1111/j.1744-7348.2010.00387.x.

  • [22] Barrientos EY Flores CR Wrobel K Wrobel K.. Impact of cadmium and selenium exposure on trace elements fatty acids and oxidative stress in Lepidium sativum. J Mex Chem Soc. 2012;56(1):3-9.

  • [23] Kumar M Bijo AJ Baghel RS Reddy CRK Jha B. Selenium and spermine alleviates cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiol Biochem. 2012;51:129-138. DOI: 10.1016/j.plaphy.2011.10.016.

  • [24] Mroczek-Zdyrska M Wójcik M. The influence of selenium on root growth and oxidative stress induced by lead in Vicia faba L. minor plants. Biol Trace Elem Res. 2012;147:320-328 DOI: 10.1007/s12011-011-9292-6.

  • [25] Feng R Wei Ch Tu S. The roles of selenium in protecting plants against abiotic stresses. Environ Exp Botany. 2013;87:58-68. DOI: 10.1016/j.envexpbot.2012.09.002.

  • [26] Ramos SJ Faquin V Guilherme LRG Castro EM Ávila FW Carvalho GS et al. Selenium biofortification and antioxidant activity in lettuce plants fed with selenate and selenite. Plant Soil Environ. 2010;56(12):584-588. DOI: 10.17221/113/2010-PSE.

  • [27] Malagoli M Schiavon M dall’Acqua S Pilon-Smits EAH. Effects of selenium biofortification on crop nutritional quality. Frontiers Plant Sci. 2015;6:280. DOI: 10.3389/fpls.2015.00280.

  • [28] Smoleń S Kowalska I Sady W. Assessment of biofortification with iodine and selenium of lettuce cultivated in the NFT hydroponic system. Scientia Horticulturae. 2014;166:9-16. DOI: 10.1016/j.scienta.2013.11.011.

  • [29] Rayman MP. The importance of selenium to human health. Lancet. 2000;365:233-241.

  • [30] Fairweather-Tait SJ Bao Y Broadley MR Collings R Ford D Hesketh JE et al. Selenium in human health and disease. Antioxid. Redox Signal. 2011;14:1337-1383. DOI: 10.1089/ars.2010.3275.

  • [31] Kalembasa S Jaremko D Adamiak EA. Wpływ sposobu mineralizacji substancji organicznej na zawartość makro- i mikroelementów w makuchu rzepakowym. (Impact of organic matter mineralisation method on the content of macro- and microelements of rapeseed cake). Acta Agrophys. 2011;18(1):77-85.

  • [32] White PJ Broadley M.R. Biofortification of crops with seven mineral elements often lacking in human diets - iron zinc copper calcium magnesium selenium and iodine. New Phytol. 2009;182:49-84. DOI: 10.1111/j.1469-8137.2008.02738.x.

  • [33] Reimann C Siewers U Tarvainen T Bityukova L Eriksson J Gilucis A et al. Agricultural Soils in Northern Europe: A Geochemical Atlas. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung; 2003 Germany 280. ISBN 978-3-510-95906-8.

  • [34] Romero CD Blanco FL Sánchez PH Rodríguez E Majem LS. Serum selenium concentration in a representative sample of the Canarian population. Sci Total Environ. 2001;269:65-73. DOI: 10.1016/S0048-9697(00)00815-9.

  • [35] Broadley MR White PJ Bryson RJ Meacham MC Bowen HC Johnson SE et al. Biofortification of UK food crops with selenium. Proc Nutr Soc. 2006;65:169-181.

  • [36] Malorgio F Diaz KE Ferrante A Mensuali-Sodid A Pezzarossae B. Effects of selenium addition on minimally processed leafy vegetables grown in a floating system. J Sci Food Agric. 2009;89:2243-2251. DOI: 10.1002/jsfa.3714.

  • [37] Põldma P Moor U Tõnutare T Herodes K Rebane R. Selenium treatment under field conditions affects mineral nutrition yield and antioxidant properties of bulb onion (Allium cepa L.). Acta Sci Pol Hortorum Cultus. 2013:12(6):167-181.

  • [38] Tobiasz A Walas S Filek M Mrowiec H Samsel K Sieprawska A et al. Effect of selenium on distribution of macro- and micro-elements to different tissues during wheat ontogeny. Biol Plant. 2014;58(2):370-374. DOI: 10.1007/s10535-014-0407-8.

  • [39] Wu Z Yin X Bañuelos GS Lin Q Liu Y Li M et al. Indications of selenium protection against cadmium and lead toxicity in oilseed rape (Brassica napus L.). Frontiers Plant Sci. 2016;7:1875. DOI: 10.3389/fpls.2016.01875.

  • [40] Kumar M Bijo AJ Baghel RS Reddy CRK Jha B. Selenium and spermine alleviates cadmium induced toxicity in the red seaweed Gracilaria dura by regulating antioxidant system and DNA methylation. Plant Physiol Biochem. 2012;51:129-138. DOI: 10.1016/j.plaphy.2011.10.016.

  • [41] Kleiber T Calomme M Borowiak K. The effect of choline-stabilized orthosilicic acid on microelements and silicon concentration photosynthesis activity and yield of tomato grown under Mn stress. Plant Physiol Biochem. 2015;96:180-188. DOI: 10.1016/j.plaphy.2015.07.033.

  • [42] Kleiber T. The effect of silicon application under Mn excessive nutrition on yielding of hydroponically grown lettuce (Lactuca sativa L.). ABiD. 2014;3:7-14. DOI: 10.5601/jelem.2015.20.1.806.

  • [43] He PP Lv XZ Wang GY. Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environ Int. 2004;30:167-172. DOI: 10.1016/S0160-4120(03)00167-3.

  • [44] Seppänen M Turakainen M Hartikainen H. Selenium effects on oxidative stress in potato. Plant Sci. 2003;165:311-319. DOI: 10.1016/S0168-9452(03)00085-2.

  • [45] Xue T Hartikainen H Piironen V. Antioxidative and growth promoting effect of selenium in senescing lettuce. Plant Soil. 2001;237:55-61. DOI: 10.1023/A:1013369804867.

  • [46] Hartikainen H Xue TL Piironen V. Selenium as an anti-oxidant and prooxidant in ryegrass. Plant Soil. 2000;225:193-200. DOI: 10.1023/A:1026512921026.

  • [47] Mora M Pinilla L Rosas A Cartes P. Selenium uptake and its influence on the antioxidative system of white clover as affected by lime and phosphorus fertilization. Plant Soil. 2008;303:139-149. DOI: 10.1007/s11104-007-9494-z.

  • [48] Moldovan C Ianculov I Hădărugă NG Dumbravă D Crăiniceanu E Drugă M et al. Influence of chlorophyll content from onion (Allium cepa) after selenium and zinc adding. J Agroaliment Proc Technol. 2009;15:437-440.

  • [49] Grant K Carey NM Mendoza M Schulze J Pilon M Pilon-Smits EAH et al. Adenosine 5-phosphosulfate reductase (APR2) mutation in Arabidopsis implicates glutathione deficiency in selenate toxicity. Biochem J. 2011;438:325-335. DOI: 10.1042/BJ20110025.

  • [50] Gupta M Gupta S. An overview of selenium uptake metabolism and toxicity in plants. Frontiers Plant Sci. 2016;7:2074. DOI: 10.3389/fpls.2016.02074.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 392 178 9
PDF Downloads 214 101 1