Prediction of the Seasonal Changes of the Chloride Concentrations in Urban Water Reservoir

Open access


This study investigated the possibility of using artificial neural networks to predict changes in the concentration of chloride ions in the urban ponds on the example of the inflow and outflow zones of water to and from the ponds Syrenie Stawy in Szczecin (NW-Poland). The possibility of using selected water quality indices (selected based on correlation matrix of water quality indices with Cl), in particular: COD-Cr, BOD5, DO, water saturation by O2 and NO2 and their influence on the chloride concentration forecast was tested.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Hill MJ Biggs J Thornhill I Briers RA Gledhill DG White JC Hassall C. Urban ponds as an aquatic biodiversity resource in modified landscapes. Glob Change Boil. 2017;23(3):986-999. DOI: 10.1111/gcb.13401.

  • [2] Song K Winters C Xenopoulos MA Marsalek J Frost PC. Phosphorus cycling in urban aquatic ecosystems: connecting biological processes and water chemistry to sediment P fractions in urban stormwater management ponds. Biogeochemistry. 2017;132(1-2):203-212. DOI: 10.1007/s10533-017-0293.

  • [3] Olguín EJ Sánchez-Galván G Melo FJ Hernández VJ González-Portela RE. Long-term assessment at field scale of Floating Treatment Wetlands for improvement of water quality and provision of ecosystem services in a eutrophic urban pond. Sci Total Environ. 2017;584:561-571. DOI: 10.1016/j.scitotenv.2017.01.072.

  • [4] Angyal Z Sárközi E Gombás Á Kardos L. Effects of land use on chemical water quality of three small streams in Budapest. O Geosci. 2016; 8(1):133-142. DOI: 10.1515/geo-2016-0012.

  • [5] Gutchess K Jin L Lautz L Shaw SB Zhou X Lu Z. Chloride sources in urban and rural headwater catchments central New York. Sci Total Environ. 2016; 565:462-472. DOI: 10.1016/j.scitotenv.2016.04.181.

  • [6] Corsi SR De Cicco LA Lutz MA Hirsch RM. River chloride trends in snow-affected urban watersheds: increasing concentrations outpace urban growth rate and are common among all seasons. Sci Total Environ. 2015;508:488-497. DOI: 10.1016/j.scitotenv.2014.12.012.

  • [7] Thornton JA Slawski TM Lin H. Salinization: the ultimate threat to temperate lakes with particular reference to Southeastern Wisconsin (USA). Chin J Oceanol Limnol. 2015;33(6):1461-1475. DOI: 10.1007/s00343-015-4368-3.

  • [8] Dojlido J Best GA. Chemistry of Water and Water Pollution. New York: Ellis Horwood Limited. 1993; 364 pp.

  • [9] Corsi SR Graczyk DJ Geis SW Booth NL Richards KD. A fresh look at road salt: aquatic toxicity and water-quality impacts on local regional and national scales. Environ Sci Technol. 2010;44(19):7376-7382. DOI: 10.1021/es101333u.

  • [10] Cieśliński R Piekarz J Zieliński M. Groundwater supply of lakes: the case of Lake Raduńskie Górne (northern Poland Kashubian Lake District). Hydrol Sci J. 2016;61(13):2427-2434. DOI: 10.1080/02626667.2015.1112903.

  • [11] Rhodes AL Guswa AJ. Storage and release of road-salt contamination from a calcareous lake-basin fen western Massachusetts USA. Sci Total Environ. 2016; 545:525-545. DOI: 10.1016/j.scitotenv.2015.12.060.

  • [12] Schweiger AH Audorff V Beierkuhnlein C. Salt in the wound: The interfering effect of road salt on acidified forest catchments. Sci Total Environ. 2015; 532:595-604.DOI: 10.1016/j.scitotenv.2015.06.034.

  • [13] Sibert RJ Koretsky CM Wyman DA. Cultural meromixis: Effects of road salt on the chemical stratification of an urban kettle lake. Chem Geol. 2015; 395:126-137. DOI: 10.1016/j.chemgeo.2014.12.010.

  • [14] Novotny EV Murphy D Stefan HG. Increase of urban lake salinity by road deicing salt. Sci Total Environ. 2008;406(1):131-144. DOI: 10.1016/j.scitotenv.2008.07.037.

  • [15] Vitale SA Robbins GA McNaboe LA. Impacts of road salting on water quality in fractured crystalline bedrock. J Environ Qual. 2017; 46(2):288-294. DOI: 10.2134/jeq2016.10.0411.

  • [16] Safi SK White AK. Short and long-term forecasting using artificial neural networks for stock prices in Palestine: a comparative study. Electron J Appl Statist Anal. 2017;10(1):14-28. DOI: 10.1285/i20705948v10n1p14.

  • [17] Moghim S Bras RL. Bias correction of climate modeled temperature and precipitation using artificial neural networks. J Hydrometeorol. 2017. DOI: 10.1175/JHM-D-16-0247.1.

  • [18] Sengorur DEB Koklu R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J Environ Manage. 2009;90(2):1229-1235. DOI: 10.10116/j.jevman.2008.06.004.

  • [19] Dastorani MT Afkhami H Sharifidarani H Dastorani M. Application of ANN and ANFIS models on dryland precipitation prediction (case study: Yazd in Central Iran). J Appl Sci. 2010;10(20):2387-2394. DOI: 10.1007/s10661-009-1012-8.

  • [20] Zhang L Zhang GX Li RR. Water quality analysis and prediction using hybrid time series and neural network models. J Agri Sci Tech. 2016;18(4):975-983.

  • [21] Mulia IE Asano T Tkalich P. Retrieval of missing values in water temperature series using a data-driven model. Ear Sci Inf. 2015;8(4):787-798. DOI: 10.1007/s12145-015-0210-x.

  • [22] Heddam S Lamda H Filali S. Predicting effluent biochemical oxygen demand in a wastewater treatment plant using generalized regression neural network based approach: a comparative study. Environ Process. 2016;3(1):153-165. DOI: 10.1007/s40710-016-0129-3.

  • [23] Li YL Zhang Q Werner AD Yao J. Investigating a complex lake-catchment-river system using artificial neural networks: Poyang Lake (China). Hydrol Res. 2015;46(6):912-928. DOI: 10.2166/nh.2015.150.

  • [24] Cole JC Maloney KO Schmid M McKenna JE. Developing and testing temperature models for regulated systems: A case study on the Upper Delaware River. J Hydrol. 2014;519:588-598. DOI: 10.1016/j.jhydrol.2014.07.058.

  • [25] Hadzima-Nyarko M Rabi A Šperac M. Implementation of artificial neural networks in modeling the waterair temperature relationship of the River Drava. Water Resour Manage. 2014; 28(5):1379-1394. DOI: 10.1007/s11269-014-0557-7.

  • [26] Rabi A Hadzima-Nyarko M Šperac M. Modelling river temperature from air temperature: case of the River Drava (Croatia). Hydrolo Sci J. 2015; 60(9):1490-1507. DOI: 10.1080/02626667.2014.914215.

  • [27] Fajčíková K Stehlíková B Cvečková V Rapant S. Application of artificial neural network in medical geochemistry. Environ Geochem Health. 2017;39(6):1513-1529. DOI: 10.1007/s10653-017-9944-3.

  • [28] Salami SE Ehteshami M. Application of artificial neural networks to estimating DO and salinity in San Joaquin River basin. Desal Water Treat. 2016;57(11):4888-4897. DOI: 10.1080/19443994.2014.995713.

  • [29] Zheng F Wan Y Song K Sun D Hedgepeth M. Reconstructing input for artificial neural networks based on embedding theory and mutual information to simulate soil pore water salinity in tidal floodplain. Water Resource Res. 2016;52:511-532 DOI: 10.1002/2014WR016875.

  • [30] Chen W Liu W Huang W Liu H. Prediction of salinity variations in a tidal estuary using artificial neural network and three-dimensional hydrodynamic models. Comput Water Ener Environ Eng. 2017;6:107-128. DOI: 10.4236/cweee.2017.61009.

  • [31] Rath JS Hutton PH Chen L Roy SB. A hybrid empirical-Bayesian artificial neural network model of salinity in the San Francisco Bay-Delta estuary. Environ Model Soft. 2017;93:193-208. DOI: 10.1016/j.envsoft.2017.03.022.

  • [32] Dandy G. Use of artificial neural networks to forecast salinity in rivers. Artificial Neural Networks in Water Supply Engineering. ASCE. 2005;107-137.

  • [33] Poleszczuk G Miller T Tokarz M. Ponds Syrenie Stawy in Szczecin - changes of selected water quality chemical indices. Chem Didact Ecol Metrol. 2015;20(1-2):85-96 DOI: 10.1515/cdem-2015-0009.

  • [34] Miller T Tokarz M Poleszczuk G. Stream Osowka in Szczecin - chemometric analysis of water quality indices in winter season. Acta Biol. 2014;21:91-104.

  • [35] Poleszczuk G Wawrzyniak W Miller T Tokarz M Gasperowicz A Adamczyk D. Syrenie Stawy in Szczecin - a comparison of the quality of waters in the winter and spring in 1994-1995 1999-2000 2006-2007 and 2014. In: Wawrzyniak W Zaborowski T editors. Ecology of Borderlands. Monography. Gorzow Wlkp.-Poznan: IBEN. 2014;122-137. DOI: 10.13140/2.1.2179.2006.

  • [36] Sammel A. Skład chemiczny osadów dennych zbiorników wodnych Syrenie Stawy aglomeracji szczecińskiej i możliwości ich wykorzystania. Inż Środ. 2015; 157(37):53-60.

  • [37] APHA. Standard methods for the examination of water and wastewater. Washington: American Public Health Association. 2012; 1800pp.

  • [38] Fahimi F Yaseen ZM El-shafie A. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review. Theor Appl Climatol. 2017;128(3):875-903. DOI: 10.1007/s00704-016-1735-8.

  • [39] Chen XY Chau KW Wang WC. A novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for downstream daily river discharge forecasting. J Hydroinf. 2015; 17(5):733-744. DOI: 10.2166/hydro.2015.095.

  • [40] Yaseen ZM El-Shafie A Afan HA Hameed M Mohtar WHMW Hussain A. RBFNN versus FFNN for daily river flow forecasting at Johor River Malaysia. Neural Comput Applic. 2016; 27(6):1533-1542. DOI: 10.1007/s00521-015-1952-6.

  • [41] Yaseen ZM El-Shafie A Jaafar O Afan HA Sayl KN. Artificial intelligence based models for stream-flow forecasting: 2000-2015. J Hydrology. 2015;530:829-844. DOI: 10.1016/j.jhydrol.2015.10.038.

  • [42] Talaee PH. Multilayer perceptron with different training algorithms for streamflow forecasting. Neural Comput Applic. 2014;24(3-4):695-703. DOI: 10.1007/s00521-012-1287-5.

  • [43] Trichakis IC Nikolos IK Karatzas GP. Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer's response. Hydrol Proces. 2009; 23(20):2956-2969. DOI: 10.1002/hyp.7410.

  • [44] Piotrowski AP Napiorkowski JJ. A comparison of methods to avoid overfitting in neural networks training in the case of catchment runoff modelling. J Hydrol. 2013;476:97-111. DOI: 10.1016/j.jhydrol.2012.10.019.

  • [45] Banhatti AG Deka PC. Effects of data pre-processing on the prediction accuracy of artificial neural network model in hydrological time series. Urban Hydrol Wat Manag Soc Econ Aspec. 2016;265-275. DOI: 10.1007/978-3-319-40195-9_21.

  • [46] Li X Maier HR Zecchin AC. Improved PMI-based input variable selection approach for artificial neural network and other data driven environmental and water resource models. Environ Model Soft. 2015;65:15-29. DOI: 10.1016/j.envsoft.2014.11.028.

  • [47] Kasiviswanathan KS Sudheer KP He J. Quantification of Prediction Uncertainty in Artificial Neural Network Models. In Artificial Neural Network Modelling Springer International Publishing. 2016;145-159. DOI: 10.1007/978-3-319-28495-8_8.

  • [48] Piotrowski AP Napiorkowski MJ Napiorkowski JJ Osuch M. Comparing various artificial neural network types for water temperature prediction in rivers. J Hydrol. 2015;529:302-315. DOI: 10.1016/j.jhydrol.2015.07.044.

  • [49] Antonopoulos VZ Georgiou PE Antonopoulos ZV. Dispersion coefficient prediction using empirical models and ANNs. Environ Proces. 2015;2(2):379-394. DOI: 10.1007/s40710-015-0074-6

  • [50] Kashefipour SM Falconer RA. Longitudinal dispersion coefficients in natural channels. Water Res. 2002; 36(6):1596-1608. DOI: 10.1016/S0043-1354(01)00351-7.

  • [51] Seo IW Cheong TS. Predicting longitudinal dispersion coefficient in natural streams. J Hydraulic Eng. 1998;124(1):25-32. DOI: 10.1061/(ASCE)0733-9429(1998)124:1(25).

Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Gesamte Zeit Letztes Jahr Letzte 30 Tage
Abstract Views 0 0 0
Full Text Views 380 155 29
PDF Downloads 202 118 38