Spatial Distribution of BTEX and Inorganic Pollutants During Summer Season in Yalova, Turkey

Open access

Abstract

The objective of this research is to determine the atmospheric concentrations and spatial distribution of benzene (B), toluene (T), ethylbenzene (E) and xylenes (X) (BTEX) and inorganic air pollutants (O3, NO2 and SO2) in the Yalova atmosphere during summer 2015. In this study, a combination of passive sampling and Geographical Information System-based geo-statistics are used with spatial statistics of autocorrelation to characterise the spatial pattern of the quality of air based on concentrations of these pollutants in Yalova. The spatial temporal variations of pollutants in the air with five types of land-use, residence, rural, highway, side road and industrial areas were investigated at 40 stations in Yalova between 7th August 2015 and 26th August 2015 using passive sampling. An inverse distance weighting interpolation technique was used to estimate variables at an unmeasured location from observed values at nearby locations. The spatial autocorrelation of air pollutants in the city was investigated using the statistical methods of Moran’s I in addition to the Getis Ord Gi. During the summer, highway and industrial sites had higher levels of BTEX then rural areas. The average concentration of toluene was measured to be 5.83 μg/m3 and this is the highest pollutant concentration. Average concentrations of NO2, O3 and SO2 are 35.64, 84.23 and 3.95 μg/m3, respectively. According to the global results of Moran’s I; NO2 and BTEX had positive correlations on a global space at a significant rate. Moreover, the autocorrelation analysis on the local space demonstrated significant hot spots on industrial sites and along the main roads.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Briggs DJ Collins S Elliott P Fischer P Kingham S Lebret E. Mapping urban air pollution using GIS: a regression based approach. Int J Geogr Inf Sci. 1997;11:699-718. DOI: 10.1080/136588197242158.

  • [2] Cooper O Parrish D Stohl A Trainer M Nédélec P Thouret V et al. Increasing springtime ozone mixing ratios in the free troposphere over western North America. Nature. 2010;463:344-348. DOI: 10.1038/nature08708.

  • [3] Gilge S Plass-Duelmer C Fricke W Kaiser A Ries L Buchmann B et al. Ozone carbon monoxide and nitrogen oxides time series at four alpine GAW mountain stations in central Europe. Atmos Chem Phys. 2010;10:12295-12316. DOI: 10.5194/acp-10-12295-2010.

  • [4] Tecer LH Tagil S. Impact of urbanization on local air quality: differences in urban and rural areas of Balikesir Turkey. Clean. 2014;42(11):1489-1499. DOI: 10.1002/clen.201200640.

  • [5] Directive 2008/50/EC of the European Parliament and of the Council of 21 May 208 on ambient air quality and cleaner air for Europe. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF.

  • [6] World Health Organization (WHO) Burden of disease from Ambient Air Pollution for 2012. Description of method Version 1.3. Geneva: World Health Organization; 2014 http://www.who.int/phe/health_topics/outdoorair/databases/HAP_BoD_results_March2014.pdf.

  • [7] Vardoulakis S Gonzales-Flesca N Fisher BEA Pericleous K. Spatial variability of air pollution in the vicinity of a permanent monitoring station in central Paris. Atmos Environ. 2005;39(15):2725-2736. DOI: 10.1016/j.atmosenv.2004.05.067.

  • [8] Wheeler A Smith-Dorion M Xu X Gilbert N Brook J. Intro-urban variability of air pollution in Windsor Ontario-measurement and modelling for human exposure. Assess Environ Res. 2008;106:7-16. DOI: 10.1016/j.envres.2007.09.004.

  • [9] Olszowski T. Seasonal values of the gaseous concentrations of air quality ratings in a rural area. Ecol Chem Eng S. 2013;20(4):719-732. DOI: 10.2478/eces-2013-0050.

  • [10] Olszowski T Kłos A. The impact of candle burning during All Saints’ Day ceremonies on ambient alkyl-substituted benzene concentrations. Bull Environ Contam Toxicol. 2013;91:588-594. DOI: 10.1007/s00128-013-1104-6.

  • [11] Li L Losser T Yorke C Piltner R. Fast inverse distance weighting-based spatiotemporal interpolation: A web-based application of interpolating daily fine particulate matter PM2.5 in the Contiguous U.S. using parallel programming and k-d tree. Int J Environ Res Public Health. 2014;11:9101-9141. DOI: 10.3390/ijerph110909101.

  • [12] Phillips DL Tingey DT Lee EH Herstrom AA Hogsett WE. Use of auxiliary data for spatial interpolation of ozone exposure in southeastern forests. Environmetrics. 1997;8(1):43-61. DOI: 10.1002/(SICI)1099-095X(199701)8:1<43::AID-ENV237>3.0.CO;2-G.

  • [13] Feng L Ye B Feng H Ren F Huang S Zhang X et al. Spatiotemporal changes in fine particulate matter pollution and the associated mortality burden in China between 2015 and 2016. Int J Environ Res Public Health. 2017;14:1321. DOI: 10.3390/ijerph14111321.

  • [14] Kethireddy SR Tchounwou PB Ahmad HA Yerramilli A Young JH. Geospatial interpolation and mapping of tropospheric ozone pollution using geostatistics. Int J Environ Res Public Health. 2014;11:983-1000. DOI: 10.3390/ijerph110100983.

  • [15] Myers DE. Interpolation and estimation with spatially located data. Chemometr Intell Lab. 1991;11:209-228. DOI: 10.1016/0169-7439(91)85001-6.

  • [16] Ikechukwu MN Ebinne E Idorenyin U Raphael NI. Accuracy assessment and comparative analysis of IDW spline and kriging in spatial interpolation of landform (Topography): An experimental study. J Geographic Informat System. 2017;9:354-371. DOI: 10.4236/jgis.2017.93022.

  • [17] Smith TB Smith N Weleber RG. Comparison of nonparametric methods for static visual field interpolation. Med Biol Eng Comput. 2017;55(1):117-126. DOI: 10.1007/s11517-016-1485-x.

  • [18] Vicente-Serrano SM Saz-Sánchez MA Cuadrat JM. Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): application to annual precipitation and temperature. Clim Res. 2003;24:161-180. DOI: 10.3354/cr024161.

  • [19] Lee J Wong D. Statistical Analysis with ArcView GIS. New York: John Wiley Sons. Inc; 2005. ISBN: 978-0-471-46899-8.

  • [20] Lu H Cai QY Wen S Chi Y Guo S Sheng G et al. Carbonyl compounds and BTEX in the special rooms of hospitals in Guangzhou China. J Hazard Mater. 2010;178:673-679. DOI: 10.1016/j.jhazmat.2010.01.138.

  • [21] Toxicity Criteria Database Cal/EPA Office of Environmental Health Hazard Assessment OEHHA Toxicity Criteria Database. http://www.oehha.ca.gov/risk/ChemicalDB/index.asp 2009.

  • [22] Kyle AD Wright CC Caldwell JC Buffler PA Woodruff TJ. Evaluating the health significance of hazardous air pollutants using monitoring data. Public Health Rep. 2001;16:32-44. DOI: 10.1093/phr/116.1.32.

  • [23] Tecer LH Tagil S. Spatial and Temporal Variations of Nitrogen Dioxide and Ozone Concentrations Assessment Using a GIS Based Geostatistical Approach in Balikesir Turkey. 12th International Multidisciplinary Scientific GeoConference www.sgem.org SGEM2012 Conference Proceedings/ ISSN 1314-2704 June 17-23 2012;4:411-418. DOI: 10.5593/SGEM2012/S17.V4023.

  • [24] Wong DW Yuan L Perlin SA. Comparison of spatial interpolation methods for the estimation of air quality data. J Expo Anal Environ Epidemiol. 2004;14(5):404-415. DOI: 10.1038/sj.jea.7500338.

  • [25] Anselin L Syabri I Kho Y. GeoDa: an introduction to spatial data analysis. Geogr Anal. 2006;38:5-22. DOI: 10.1111/j.0016-7363.2005.00671.x.

  • [26] Anselin L. Local indicators of association-LISA. Geogr Anal. 1995;27:93-115. DOI: 10.1111/j.1538-4632.1995.tb00338.x.

  • [27] Getis A Ord JK. The analysis of spatial association by use of distance statistics. Geogr Anal. 1992;24(3):189-206. DOI: 10.1111/j.1538-4632.1992.tb00261.x.

  • [28] Lee SC Chiu MY Ho KF Zou SC Wang XM. Volatile Organic Compounds (VOCs) in urban atmosphere of Hong Kong. Atmos Environ. 2002;48:375-382. DOI: 10.1016/S0045-6535(02)00040-1.

  • [29] Hsieh LT Yang HH Chen HW. Ambient BTEX and MTBE in the neighborhoods of different industrial parks in Southern Taiwan. J Hazard Mater. 2006;128:106-115. DOI: 10.1016/j.jhazmat.2005.08.001.

  • [30] Pekey B Ozaslan U. Spatial distribution of SO2 NO2 and O3 concentrations in an industrial City of Turkey using a passive sampling method. Clean. 2013;41:423-428. DOI: 10.1002/clen.201200172.

  • [31] Hoque RR Khillare PS Agarwal T Shridhar V Balachandran S. Spatial and temporal variation of BTEX in the urban atmosphere of Delhi India. Sci Total Environ. 2008;392:30-40. DOI: 10.1016/j.scitotenv.2007.08.036.

  • [32] Gelencsér A Siszler K Hlavay J. Toluene-benzene concentration ratio as a tool for characterizing the distance from vehicular emission sources. Environ Sci Technol. 1997;31:2869-2872. DOI: 10.1021/es970004c.

  • [33] Liu PWG Yao YC Tsai JH Hsu YC Chang LP Chang KH. Source impacts by volatile organic compounds in an industrial city of southern Taiwan. Sci Total Environ. 2008;398(13):154-163. DOI: 10.1016/j.scitotenv.2008.02.053.

  • [34] Monod A Sive BC Avino P Chen T Blake DB Rowland FS. Monoaromatic compounds in ambient air of various cities: a focus on correlations between the xylenes and ethylbenzene. Atmos Environ. 2001;35:135-149. DOI: 10.1016/S1352-2310(00)00274-0.

  • [35] Truc VTQ Oanh NTK. Roadside BTEX and other gaseous air pollutants in relation to emission sources. Atmos Environ. 2007;41:7685-7697. DOI: 10.1016/j.atmosenv.2007.06.003.

  • [36] Yurdakul S Civan M Tunce G. Volatile organic compounds in suburban Ankara atmosphere Turkey: sources and variability. Atmos Res. 2013;120-121:298-311. DOI: 10.1016/j.atmosres.2012.09.015.

  • [37] Zalel A Broday DM. Revealing source signatures in ambient BTEX concentrations. Environ Pollut. 2008;156(2):553-562. DOI: 10.1016/j.envpol.2008.01.016.

  • [38] Mehta D Nguyen A Montenegro A Li ZA. Kinetic study of the reaction of OH with xylenes using the relative rate/discharge flow/mass spectrometry technique. J Phys Chem. 2009;113(46):12942-12951. DOI: 10.1021/jp905074j.

  • [39] Council Directive 96/62/EC of 27 September 1996 on ambient air quality assessment and management. http://eur-lex.europa.eu/LexUriServ/site/en/consleg/1996/L/01996L0062-20031120-en.pdf.

  • [40] Itano Y Bandow H Takenaka N Saitoh Y Asayama A Fukuyama J. Impact of NOx reduction on long-term ozone trends in an urban atmosphere. Sci Total Environ. 2007;379:46-55. DOI: 10.1016/j.scitotenv.2007.01.079.

  • [41] Zabalza J Ogulei D Elustondo D Santamaría JM Alastuey A Querol X et al. Study of urban atmospheric pollution in Navarre (Northern Spain). Environ Monit Assess. 2007;134:137-151. DOI: 10.1007/s10661-007-9605-6.

  • [42] Saborit JMD Cano VJE. Field comparison of passive samplers versus UV-photometric analyser to measure surface ozone in a Mediterranean area. J Environ Monit. 2007;9:610-615. DOI: 10.1039/B618075B.

  • [43] Keuken M Roemer M van den Elshout S. Trend analysis of urban NO2 concentrations and the importance of direct NO2 emissions versus ozone/NOx equilibrium. Atmos Environ. 2009;43:4780-4783. DOI: 10.1016/j.atmosenv.2008.07.043.

  • [44] Wolff GT Korsog PE. Ozone control strategies based on the ration of volatile organic compounds to nitrogen oxides. J Air Waste Manage Assoc. 1992;42:1173-1177. DOI: 10.1080/10473289.1992.10467064.

Search
Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 118 0
PDF Downloads 144 106 4