Estimating Root Zone Moisture from Surface Soil Using Limited Data

Open access


For estimation of root-zone moisture content from EO-1/Hyperion imagery, surface soil moisture was first predicted by hyperspectral reflectance data using partial least square regression (PLSR) analysis. The textures of more than 300 soil samples extracted from a 900 m × 900 m field site located within the Hetao Irrigation District in China were used to parameterize the HYDRUS-1D numerical model. The study area was spatially discretized into 18,000 compartments (30 m × 30 m × 0.02 m), and Monte Carlo simulations were applied to generate 2000 different soil-particle size distributions for each compartment. Soil hydraulic properties for each realization were determined by application of artificial neural network analysis and used to parameterize HYDRUS-1D to simulate averaged soil-moisture contents within the root zone (0-40 cm) and surface (approximately 0-4 cm). Then the link between surface moisture and root zone was established by use of linear regression analysis, resulting in R and RMSE of 0.38 and 0.03, respectively. Kriging and co-kriging with observed surface moisture, and co-kriging with surface moisture obtained from Hyperion imagery were also used to estimate root-zone moisture. Results indicated that PLSR is a powerful tool for soil moisture estimation from hyperspectral data. Furthermore, co-kriging with observed surface moisture had the highest R (0.41) and linear regression model, and HYDRUS Monte Carlo simulations had a lowest RMSE (0.03) among the four methods. In regions that have similar climatic and soil conditions to our study area, a linear regression model with HYDRUS Monte Carlo simulations is a practical method for root-zone moisture estimation before sowing and it can be easily coupled with remote sensing technology.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Callaghan MV Head FA Cey EE Bentley LR. Salt leaching in fine-grained macroporous soil: Negative effects of excessive matrix saturation. Agricult Water Manage. 2017;181:73-84. DOI: 10.1016/j.agwat.2016.11.025.

  • [2] He K Yang Y Yang Y Chen S Hu Q Liu X et al. Hydrus simulation of sustainable brackish water irrigation in a winter wheat-summer maize rotation system in the north china plain. Water. 2017;9(7):536. DOI: 10.3390/w9070536.

  • [3] Trujillo-González J Mahecha-Pulido J Torres-Mora M Brevik E Keesstra S Jiménez-Ballesta R. Impact of potentially contaminated river water on agricultural irrigated soils in an equatorial climate. Agriculture. 2017;7(7):52. DOI: 10.3390/agriculture7070052.

  • [4] Li Y Šimůnek J Wang S Yuan J Zhang W. Modeling of soil water regime and water balance in a transplanted rice field experiment with reduced irrigation. Water. 2017;9(4):248. DOI: 10.3390/w9040248.

  • [5] García-Garizábal I Causapé J Merchán D. Evaluation of alternatives for flood irrigation and water usage in spain under mediterranean climate. CATENA. 2017;155:127-134. DOI: 10.1016/j.catena.2017.02.019.

  • [6] Jalali V Asadi Kapourchal S Homaee M. Evaluating performance of macroscopic water uptake models at productive growth stages of durum wheat under saline conditions. Agricult Water Manage. 2017;180:13-21. DOI: 10.1016/j.agwat.2016.10.015.

  • [7] Hassan-Esfahani L Torres-Rua A Jensen A Mckee M. Spatial root zone soil water content estimation in agricultural lands using bayesian-based artificial neural networks and high-resolution visual nir and thermal imagery. Irrigation Drainage. 2017;66(2):273-288. DOI: 10.1002/ird.2098.

  • [8] Veihmeyer FJ Hendrickson AH. The moisture equivalent as a measure of the field capacity of soils. Soil Sci. 1931;32(3):181-194. DOI: 10.1097/00010694-193109000-00003.

  • [9] Shepherd KD Walsh MG. Development of reflectance spectral libraries for characterization of soil properties. Soil Sci Soc Am J. 2002;66(3):988-998. DOI: DOI: 10.2136/sssaj2002.9880.

  • [10] Nanni MR Demattê JAM. Spectral reflectance methodology in comparison to traditional soil analysis. Soil Sci Soc Am J. 2006;70:393-407. DOI: 10.2136/sssaj2003.0285.

  • [11] Tucker CJ Pinzon JE Brown ME Slayback DA Pak EW Mahoney R et al. An extended AVHRR 8-km NDVI dataset compatible with modis and spot vegetation NDVI data. Int J Remote Sens. 2005;26(20):4485-4498. DOI: 10.1080/01431160500168686.

  • [12] Liu G Guo H Yan S Song R Ruan Z Lv M. Revealing the surge behaviour of the yangtze river headwater glacier during 1989-2015 with tandem-x and landsat images. J Glaciology. 2017;63(238):382-386. DOI: 10.1017/jog.2017.4.

  • [13] Shahtahmassebi AR Lin Y Lin L Atkinson PM Moore N Wang K et al. Reconstructing historical land cover type and complexity by synergistic use of landsat multispectral scanner and corona. Remote Sensing. 2017;9(7):682. DOI: 10.3390/rs9070682.

  • [14] Yu H Kong B Wang G Du R Qie G. Prediction of soil properties using a hyperspectral remote sensing method. Archives Agronomy Soil Sci. 2017:1-14. DOI: 10.1080/03650340.2017.1359416.

  • [15] Rocha Neto O Teixeira A Leão R Moreira L Galvão L. Hyperspectral remote sensing for detecting soil salinization using prospectir-vs aerial imagery and sensor simulation. Remote Sensing. 2017;9(1):42. DOI: 10.3390/rs9010042.

  • [16] Ben-Dor E Chabrillat S Demattê JAM Taylor GR Hill J Whiting ML et al. Using imaging spectroscopy to study soil properties. Remote Sens Environ. 2009;113:S38-S55. DOI: 10.1016/j.rse.2008.09.019.

  • [17] Calzolari C Ungaro F. Predicting shallow water table depth at regional scale from rainfall and soil data. J Hydrol. 2012;414:374-387. DOI: 10.1016/j.jhydrol.2011.11.008.

  • [18] Vauclin M Vieira S Vachaud G Nielsen D. The use of cokriging with limited field soil observations. Soil Sci Soc Am J. 1983;47(2):175-184. DOI: 10.2136/sssaj1983.03615995004700020001x.

  • [19] Sun RH Liu QL Chen LD. Study on precipitation based on the geostatistical analyst method. J China Hydrol. 2010;30(1):14-18. DOI: 10.3969/j.issn.1000-0852.2010.01.003.

  • [20] Yates SR Warrick AW. Estimating soil water content using cokriging. Soil Sci Soc Am J. 1987;51(1):23-30. DOI: 10.2136/sssaj1987.03615995005100010005x.

  • [21] Ghadermazi J Sayyad G Mohammadi J Moezzi A Ahmadi F Schulin R. Spatial prediction of nitrate concentration in drinking water using ph as auxiliary co-kriging variable. Procedia Environ Sci. 2011;3(0):130-135. DOI: 10.1016/j.proenv.2011.02.023.

  • [22] Regalado CM Ritter A Rodríguez-González RM. Performance of the commercial wet capacitance sensor as compared with time domain reflectometry in volcanic soils. Vadose Zone J. 2007;6(2):244-254. DOI: 10.2136/vzj2006.0138.

  • [23] Blonquist Jr J Jones SB Robinson D. A time domain transmission sensor with tdr performance characteristics. J Hydrol. 2005;314(1):235-245. DOI: 10.1016/j.jhydrol.2005.04.005.

  • [24] Manfreda S Brocca L Moramarco T Melone F Sheffield J. A physically based approach for the estimation of root-zone soil moisture from surface measurements. Hydrol Earth Syst Sci. 2014;18(3):1199-1212. DOI: 10.5194/hess-18-1199-2014.

  • [25] Noborio K. Measurement of soil water content and electrical conductivity by time domain reflectometry: A review. Comput Electron Agr. 2001;31(3):213-237. DOI: 10.1016/S0168-1699(00)00184-8.

  • [26] Kilmer VJ Alexander LT. Methods of making mechanical analyses of soils. Soil Sci. 1949;68(1):15-24. DOI: 10.1097/00010694-194907000-00003.

  • [27] Geladi P Kowalski BR. Partial least-squares regression: A tutorial. Analytica Chim Acta. 1986;185:1-17. DOI: 10.1016/0003-2670(86)80028-9.

  • [28] Wold S Ruhe A Wold H Dunn WJ. The collinearity problem in linear regression. The partial least squares (pls) approach to generalized inverses. SIAM J Sci Stat Computing. 1984;5(3):735-743. DOI: 10.1137/0905052.

  • [29] Helland IS. On the structure of partial least squares regression. Communic Statistics-Simul Comput. 1988;17(2):581-607. DOI: 10.1080/03610918808812681.

  • [30] Abdi H. Partial least squares regression and projection on latent structure regression (pls regression). Wiley Interdisciplin Reviews: Computat Statistics. 2010;2(1):97-106. DOI: 10.1002/wics.51.

  • [31] Gomez C Viscarra Rossel RA Mcbratney AB. Soil organic carbon prediction by hyperspectral remote sensing and field vis-nir spectroscopy: An Australian case study. Geoderma. 2008;146(3):403-411. DOI: 10.1016/j.geoderma.2008.06.011.

  • [32] Chen H Pan T Chen J Lu Q. Waveband selection for NIR spectroscopy analysis of soil organic matter based on SG smoothing and MWPLS methods. Chemometrics Intell Labor Systems. 2011;107(1):139-146. DOI: 10.1016/j.chemolab.2011.02.008.

  • [33] Tsai F Philpot W. Derivative analysis of hyperspectral data. Remote Sens Environ. 1998;66(1):41-51. DOI: 10.1016/S0034-4257(98)00032-7.

  • [34] Van Genuchten MT. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J. 1980;44(5):892-898. DOI: 10.2136/sssaj1980.03615995004400050002x.

  • [35] Schaap MG Leij FJ Van Genuchten MT. Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol. 2001;251(3-4):163-176. DOI: 10.1016/s0022-1694(01)00466-8.

  • [36] Hu SZ Qiao DM Shi HB. Analysis on root ecological and physiological characteristics of sunflower. J Arid Land Resour Environ. 2006;20(6):192-197. DOI: 10.3969/j.issn.1003-7578.2006.06.037.

  • [37] Zeng W Xu C Wu J Huang J Zhao Q Wu M. Impacts of salinity and nitrogen on the photosynthetic rate and growth of sunflowers (Helianthus annuus l.). Pedosphere. 2014;24(5):635-644. DOI: 10.1016/S1002-0160(14)60049-7.

  • [38] Holzman ME Rivas R Piccolo MC. Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. Int J Appl Earth Observ Geoinformation. 2014;28:181-192. DOI: 10.1016/j.jag.2013.12.006.

  • [39] Lobell DB Asner GP. Moisture effects on soil reflectance. Soil Sci Soc Am J. 2002;66(3):722-727. DOI: 10.2136/sssaj2002.7220.

  • [40] Morel J Bégué A Todoroff P Martiné J-F Lebourgeois V Petit M. Coupling a sugarcane crop model with the remotely sensed time series of fipar to optimise the yield estimation. Eur J Agron. 2014;61:60-68. DOI: 10.1016/j.eja.2014.08.004.

  • [41] Haubrock SN Chabrillat S Lemmnitz C Kaufmann H. Surface soil moisture quantification models from reflectance data under field conditions. Int J Remote Sens. 2008;29(1):3-29. DOI: 10.1080/01431160701294695.

  • [42] Whiting ML Li L Ustin SL. Predicting water content using Gaussian model on soil spectra. Remote Sens Environ. 2004;89(4):535-552. DOI: 10.1016/j.rse.2003.11.009.

  • [43] Diepen CV Wolf J Keulen HV Rappoldt C. Wofost: A simulation model of crop production. Soil Use Manage. 1989;5(1):16-24. DOI: 10.1111/j.1475-2743.1989.tb00755.x.

  • [44] Boogaard H Wolf J Supit I Niemeyer S Van Ittersum M. A regional implementation of wofost for calculating yield gaps of autumn-sown wheat across the European Union. Field Crop Res. 2013;143:130-142. DOI: 10.1016/j.fcr.2012.11.005.

  • [45] Kornelsen K C Coulibaly P. Root-zone soil moisture estimation using data-driven methods. Water Resour Res. 2014;50(4):2946-2962. DOI: 10.1002/2013WR014127.

  • [46] Das NN Mohanty BP. Root zone soil moisture assessment using remote sensing and vadose zone modeling. Vadose Zone J. 2006;5(1):296-307. DOI: 10.2136/vzj2005.0033.

  • [47] Zeng W Xu C Huang J Wu J Tuller M. Predicting near-surface moisture content of saline soils from near-infrared reflectance spectra with a modified Gaussian model. Soil Sci Soc America J. 2016;80(6):1496-1506. DOI: 10.2136/sssaj2016.06.0188.

  • [48] Wigneron JP Olioso A Calvet JC Bertuzzi P. Estimating root zone soil moisture from surface soil moisture data and soil-vegetation-atmosphere transfer modeling. Water Resour Res. 1999;35(12):3735-3745. DOI: 10.1029/1999WR900258.

  • [49] Li J Islam S. Estimation of root zone soil moisture and surface fluxes partitioning using near surface soil moisture measurements. J Hydrol. 2002;259(1):1-14. DOI: 10.1016/S0022-1694(01)00589-3.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 369 138 5
PDF Downloads 237 118 6