Polycyclic aromatic hydrocarbons removal from produced water by electrochemical process optimization

Open access


Produced water is actually the wastewater separated from petroleum crude oil. Electrochemical-oxidation experiments was conducted for degradation of 16 priority polycyclic aromatic hydrocarbons (PAHs) using DSA type Ti/IrO2 anode. Laboratory scale batch reactor was used for degradation studies. To get the maximum PAHs removal electrochemical process optimized on three independent variable current density, pH and electrolysis time. The response surface modelling (RSM) based on a Box-Behnken design was applied to get appropriate experimental design. X1, X2 and X3 are the coded factors of independent variables such as the current density, pH and electrolysis time, respectively. Maximum removal was 95.29% at optimized conditions such as current density of 9 mA/cm2, pH 3 and electrolysis time 3.7 h. Quadratic model was suggested best fit model. The results of the Analysis of Variances (ANOVA) for PAHs demonstrated that the model was highly significant.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Castillo A Cheali P Gómez V Comas J Poch M Sin G. An integrated knowledge-based and optimization tool for the sustainable selection of wastewater treatment process concepts. Environ Model Softw. 2016;84:177-192. DOI: 10.1016/j.envsoft.2016.06.019.

  • [2] Arulmathi P Elangovan G Begum AF. Optimization of electrochemical treatment process conditions for distillery effluent using response surface methodology. Scientific World J. 2015;1-9. DOI: 10.1155/2015/581463.

  • [3] GilPavas E Dobrosz-Gómez I Gómez-García MÁ. Electrochemical degradation of Acid Yellow 23 by anodic oxidation-optimization of operating parameters. J Environ Eng. 2016;142 p.04016052. DOI: 10.1061/(ASCE)EE.1943-7870.0001127.

  • [4] Tolian G Jafari SA. Zarei S. Optimization of biosorption of nickel(II) and cadmium(II) by indigenous seaweed Enteromorpha using response surface methodology. Water Qual Res J Can. 2015;50(2):109-122. DOI: 10.2166/wqrjc.2015.007.

  • [5] Fakhri A. Investigation of mercury(II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology. Process Saf Environ Prot. 2015;93:1-8. DOI: 10.1016/j.psep.2014.06.003.

  • [6] Yaqub A Isa MH Ajab H. Electrochemical degradation of polycyclic aromatic hydrocarbons in synthetic solution and produced water using a Ti/SnO2-Sb2O5-RuO2 anode. J Environ Eng. 2015;141(4):p.04014074. DOI: 10.1061/(ASCE)EE.1943-7870.0000900.

  • [7] Yaqub A Isa MH Kutty SRM Ajab H. Electrochemical degradation of PAHs in produced water using Ti/Sb2O5-SnO2-IrO2 anode. Electrochemistry. 2014;82(11):979-984. DOI: 10.5796/electrochemistry.82.979.

  • [8] Balaam JL Chan-Man Y Roberts PH Thomas KV. Identification of non-regulated pollutants in North Sea-produced water discharges. Environ Toxicol Chem. 2009;28(6):1159-1167. DOI: 10.1897/08-488.1.

  • [9] Stephenson MT. Components of produced water: A compilation of industry studies. Soc Petrol Eng J. 1992;548-603. DOI: 10.2118/23313-PA.

  • [10] An C Huang G Yao Y Zhao S. Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Sci Total Environ. 2017;579:537-556. DOI: 10.1016/j.scitotenv.2016.11.062.

  • [11] Frost TK Johnsen S Utvik TIR. Produced water discharges to the North Sea fate and effects in the water column. OLF (Oljeindustriens Landsforening); December 1998. http://www.olf.no/staticen/rapporter/producedwater/.

  • [12] Panić VV Dekanski AB Mišković-Stanković VB Milonjić SK Nikolić BŽ. Differences in the electrochemical behavior of ruthenium and iridium oxide in electrocatalytic coatings of activated titanium anodes prepared by the sol-gel procedure. J Serb Chem Soc. 2010;75(10):1413-1420. DOI: 10.1039/B921582D.

  • [13] Kristóf J Mihály J Daolio S De-Battisti A Nanni L Piccirillo C. Hydrolytic reactions in hydrated iridium chloride coatings. J Electroanal Chem. 1997;434:99-104. DOI: 10.1016/S0022-0728(96)05068-1.

  • [14] Miyata M Ihara I Yoshid G Toyod K Umetsu K. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Water Sci Technol. 2011;63(3):456-461. DOI: 10.2166/wst.2011.243.

  • [15] Wang Y Li M Feng C Zhang Z. Electrochemical oxidation of sulfide in oil wastewater using Ti/IrO2 anode. Environ Prog Sust Energy. 2012;31(4):500-506. DOI 10.1002/ep.10565.

  • [16] Liu Y Li L Goel R. Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions. J Hazard Mater. 2009;167(1):959-965. DOI: 10.1016/j.jhazmat.2009.01.082.

  • [17] Yaqub A Isa MH Kutty SRM Ajab H. Surface characteristics of Ti/IrO2 anode material and its electrocatalytic properties for polycyclic aromatic hydrocarbons (PAHs) degradation in aqueous solution. J New Mater Electrochem Sys. 2014;17(1):39-44. http://www.groupes.polymtl.ca/jnmes/modules/journal/index.php/content0827.html.

  • [18] Yaqub A Isa MH Ajab H Junaid M. Electrochemical degradation of petroleum hydrocarbons (PAHS) from synthetic aqueous solutions. Petro Chem. 2017;57(5):457-465. DOI: 10.1134/S0965544117050140.

  • [19] Vijayaraghavan K Ramanujam T Balasubramanian N. In situ hypochlorous acid generation for the treatment of textile wastewater. Color Technol. 2001;117:49-53. DOI: 10.1111/j.1478-4408.2001.tb00335.x.

Journal information
Impact Factor

IMPACT FACTOR 2018: 1.467
5-year IMPACT FACTOR: 1.226

CiteScore 2018: 1.47

SCImago Journal Rank (SJR) 2018: 0.352
Source Normalized Impact per Paper (SNIP) 2018: 0.907

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 373 222 5
PDF Downloads 143 92 4